Metamath Proof Explorer


Definition df-mex

Description: Define the set of expressions, which are strings of constants and variables headed by a typecode constant. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mex
|- mEx = ( t e. _V |-> ( ( mTC ` t ) X. ( mREx ` t ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmex
 |-  mEx
1 vt
 |-  t
2 cvv
 |-  _V
3 cmtc
 |-  mTC
4 1 cv
 |-  t
5 4 3 cfv
 |-  ( mTC ` t )
6 cmrex
 |-  mREx
7 4 6 cfv
 |-  ( mREx ` t )
8 5 7 cxp
 |-  ( ( mTC ` t ) X. ( mREx ` t ) )
9 1 2 8 cmpt
 |-  ( t e. _V |-> ( ( mTC ` t ) X. ( mREx ` t ) ) )
10 0 9 wceq
 |-  mEx = ( t e. _V |-> ( ( mTC ` t ) X. ( mREx ` t ) ) )