Description: Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mdv | |- mDV = ( t e. _V |-> ( ( ( mVR ` t ) X. ( mVR ` t ) ) \ _I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmdv | |- mDV |
|
| 1 | vt | |- t |
|
| 2 | cvv | |- _V |
|
| 3 | cmvar | |- mVR |
|
| 4 | 1 | cv | |- t |
| 5 | 4 3 | cfv | |- ( mVR ` t ) |
| 6 | 5 5 | cxp | |- ( ( mVR ` t ) X. ( mVR ` t ) ) |
| 7 | cid | |- _I |
|
| 8 | 6 7 | cdif | |- ( ( ( mVR ` t ) X. ( mVR ` t ) ) \ _I ) |
| 9 | 1 2 8 | cmpt | |- ( t e. _V |-> ( ( ( mVR ` t ) X. ( mVR ` t ) ) \ _I ) ) |
| 10 | 0 9 | wceq | |- mDV = ( t e. _V |-> ( ( ( mVR ` t ) X. ( mVR ` t ) ) \ _I ) ) |