Metamath Proof Explorer


Definition df-mdv

Description: Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mdv mDV = t V mVR t × mVR t I

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmdv class mDV
1 vt setvar t
2 cvv class V
3 cmvar class mVR
4 1 cv setvar t
5 4 3 cfv class mVR t
6 5 5 cxp class mVR t × mVR t
7 cid class I
8 6 7 cdif class mVR t × mVR t I
9 1 2 8 cmpt class t V mVR t × mVR t I
10 0 9 wceq wff mDV = t V mVR t × mVR t I