Metamath Proof Explorer


Definition df-mdv

Description: Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mdv mDV = ( 𝑡 ∈ V ↦ ( ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∖ I ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmdv mDV
1 vt 𝑡
2 cvv V
3 cmvar mVR
4 1 cv 𝑡
5 4 3 cfv ( mVR ‘ 𝑡 )
6 5 5 cxp ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) )
7 cid I
8 6 7 cdif ( ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∖ I )
9 1 2 8 cmpt ( 𝑡 ∈ V ↦ ( ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∖ I ) )
10 0 9 wceq mDV = ( 𝑡 ∈ V ↦ ( ( ( mVR ‘ 𝑡 ) × ( mVR ‘ 𝑡 ) ) ∖ I ) )