Metamath Proof Explorer


Definition df-mvrs

Description: Define the set of variables in an expression. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mvrs mVars = ( 𝑡 ∈ V ↦ ( 𝑒 ∈ ( mEx ‘ 𝑡 ) ↦ ( ran ( 2nd𝑒 ) ∩ ( mVR ‘ 𝑡 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvrs mVars
1 vt 𝑡
2 cvv V
3 ve 𝑒
4 cmex mEx
5 1 cv 𝑡
6 5 4 cfv ( mEx ‘ 𝑡 )
7 c2nd 2nd
8 3 cv 𝑒
9 8 7 cfv ( 2nd𝑒 )
10 9 crn ran ( 2nd𝑒 )
11 cmvar mVR
12 5 11 cfv ( mVR ‘ 𝑡 )
13 10 12 cin ( ran ( 2nd𝑒 ) ∩ ( mVR ‘ 𝑡 ) )
14 3 6 13 cmpt ( 𝑒 ∈ ( mEx ‘ 𝑡 ) ↦ ( ran ( 2nd𝑒 ) ∩ ( mVR ‘ 𝑡 ) ) )
15 1 2 14 cmpt ( 𝑡 ∈ V ↦ ( 𝑒 ∈ ( mEx ‘ 𝑡 ) ↦ ( ran ( 2nd𝑒 ) ∩ ( mVR ‘ 𝑡 ) ) ) )
16 0 15 wceq mVars = ( 𝑡 ∈ V ↦ ( 𝑒 ∈ ( mEx ‘ 𝑡 ) ↦ ( ran ( 2nd𝑒 ) ∩ ( mVR ‘ 𝑡 ) ) ) )