Metamath Proof Explorer


Definition df-mvrs

Description: Define the set of variables in an expression. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mvrs
|- mVars = ( t e. _V |-> ( e e. ( mEx ` t ) |-> ( ran ( 2nd ` e ) i^i ( mVR ` t ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvrs
 |-  mVars
1 vt
 |-  t
2 cvv
 |-  _V
3 ve
 |-  e
4 cmex
 |-  mEx
5 1 cv
 |-  t
6 5 4 cfv
 |-  ( mEx ` t )
7 c2nd
 |-  2nd
8 3 cv
 |-  e
9 8 7 cfv
 |-  ( 2nd ` e )
10 9 crn
 |-  ran ( 2nd ` e )
11 cmvar
 |-  mVR
12 5 11 cfv
 |-  ( mVR ` t )
13 10 12 cin
 |-  ( ran ( 2nd ` e ) i^i ( mVR ` t ) )
14 3 6 13 cmpt
 |-  ( e e. ( mEx ` t ) |-> ( ran ( 2nd ` e ) i^i ( mVR ` t ) ) )
15 1 2 14 cmpt
 |-  ( t e. _V |-> ( e e. ( mEx ` t ) |-> ( ran ( 2nd ` e ) i^i ( mVR ` t ) ) ) )
16 0 15 wceq
 |-  mVars = ( t e. _V |-> ( e e. ( mEx ` t ) |-> ( ran ( 2nd ` e ) i^i ( mVR ` t ) ) ) )