Step |
Hyp |
Ref |
Expression |
0 |
|
cmpaa |
|- minPolyAA |
1 |
|
vx |
|- x |
2 |
|
caa |
|- AA |
3 |
|
vp |
|- p |
4 |
|
cply |
|- Poly |
5 |
|
cq |
|- QQ |
6 |
5 4
|
cfv |
|- ( Poly ` QQ ) |
7 |
|
cdgr |
|- deg |
8 |
3
|
cv |
|- p |
9 |
8 7
|
cfv |
|- ( deg ` p ) |
10 |
|
cdgraa |
|- degAA |
11 |
1
|
cv |
|- x |
12 |
11 10
|
cfv |
|- ( degAA ` x ) |
13 |
9 12
|
wceq |
|- ( deg ` p ) = ( degAA ` x ) |
14 |
11 8
|
cfv |
|- ( p ` x ) |
15 |
|
cc0 |
|- 0 |
16 |
14 15
|
wceq |
|- ( p ` x ) = 0 |
17 |
|
ccoe |
|- coeff |
18 |
8 17
|
cfv |
|- ( coeff ` p ) |
19 |
12 18
|
cfv |
|- ( ( coeff ` p ) ` ( degAA ` x ) ) |
20 |
|
c1 |
|- 1 |
21 |
19 20
|
wceq |
|- ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 |
22 |
13 16 21
|
w3a |
|- ( ( deg ` p ) = ( degAA ` x ) /\ ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 ) |
23 |
22 3 6
|
crio |
|- ( iota_ p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` x ) /\ ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 ) ) |
24 |
1 2 23
|
cmpt |
|- ( x e. AA |-> ( iota_ p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` x ) /\ ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 ) ) ) |
25 |
0 24
|
wceq |
|- minPolyAA = ( x e. AA |-> ( iota_ p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` x ) /\ ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 ) ) ) |