| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmpaa |
|- minPolyAA |
| 1 |
|
vx |
|- x |
| 2 |
|
caa |
|- AA |
| 3 |
|
vp |
|- p |
| 4 |
|
cply |
|- Poly |
| 5 |
|
cq |
|- QQ |
| 6 |
5 4
|
cfv |
|- ( Poly ` QQ ) |
| 7 |
|
cdgr |
|- deg |
| 8 |
3
|
cv |
|- p |
| 9 |
8 7
|
cfv |
|- ( deg ` p ) |
| 10 |
|
cdgraa |
|- degAA |
| 11 |
1
|
cv |
|- x |
| 12 |
11 10
|
cfv |
|- ( degAA ` x ) |
| 13 |
9 12
|
wceq |
|- ( deg ` p ) = ( degAA ` x ) |
| 14 |
11 8
|
cfv |
|- ( p ` x ) |
| 15 |
|
cc0 |
|- 0 |
| 16 |
14 15
|
wceq |
|- ( p ` x ) = 0 |
| 17 |
|
ccoe |
|- coeff |
| 18 |
8 17
|
cfv |
|- ( coeff ` p ) |
| 19 |
12 18
|
cfv |
|- ( ( coeff ` p ) ` ( degAA ` x ) ) |
| 20 |
|
c1 |
|- 1 |
| 21 |
19 20
|
wceq |
|- ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 |
| 22 |
13 16 21
|
w3a |
|- ( ( deg ` p ) = ( degAA ` x ) /\ ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 ) |
| 23 |
22 3 6
|
crio |
|- ( iota_ p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` x ) /\ ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 ) ) |
| 24 |
1 2 23
|
cmpt |
|- ( x e. AA |-> ( iota_ p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` x ) /\ ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 ) ) ) |
| 25 |
0 24
|
wceq |
|- minPolyAA = ( x e. AA |-> ( iota_ p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` x ) /\ ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` x ) ) = 1 ) ) ) |