Step |
Hyp |
Ref |
Expression |
1 |
|
fveqeq2 |
|- ( a = A -> ( ( p ` a ) = 0 <-> ( p ` A ) = 0 ) ) |
2 |
1
|
anbi2d |
|- ( a = A -> ( ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) <-> ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) ) ) |
3 |
2
|
rexbidv |
|- ( a = A -> ( E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) <-> E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) ) ) |
4 |
3
|
rabbidv |
|- ( a = A -> { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) } = { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) } ) |
5 |
4
|
infeq1d |
|- ( a = A -> inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) } , RR , < ) = inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) } , RR , < ) ) |
6 |
|
df-dgraa |
|- degAA = ( a e. AA |-> inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) } , RR , < ) ) |
7 |
|
ltso |
|- < Or RR |
8 |
7
|
infex |
|- inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) } , RR , < ) e. _V |
9 |
5 6 8
|
fvmpt |
|- ( A e. AA -> ( degAA ` A ) = inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) } , RR , < ) ) |