Metamath Proof Explorer


Theorem dgraaval

Description: Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014) (Revised by AV, 29-Sep-2020)

Ref Expression
Assertion dgraaval
|- ( A e. AA -> ( degAA ` A ) = inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) } , RR , < ) )

Proof

Step Hyp Ref Expression
1 fveqeq2
 |-  ( a = A -> ( ( p ` a ) = 0 <-> ( p ` A ) = 0 ) )
2 1 anbi2d
 |-  ( a = A -> ( ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) <-> ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) ) )
3 2 rexbidv
 |-  ( a = A -> ( E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) <-> E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) ) )
4 3 rabbidv
 |-  ( a = A -> { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) } = { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) } )
5 4 infeq1d
 |-  ( a = A -> inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) } , RR , < ) = inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) } , RR , < ) )
6 df-dgraa
 |-  degAA = ( a e. AA |-> inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` a ) = 0 ) } , RR , < ) )
7 ltso
 |-  < Or RR
8 7 infex
 |-  inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) } , RR , < ) e. _V
9 5 6 8 fvmpt
 |-  ( A e. AA -> ( degAA ` A ) = inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` A ) = 0 ) } , RR , < ) )