Step |
Hyp |
Ref |
Expression |
1 |
|
dgraaval |
|- ( A e. AA -> ( degAA ` A ) = inf ( { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } , RR , < ) ) |
2 |
|
ssrab2 |
|- { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } C_ NN |
3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
4 |
2 3
|
sseqtri |
|- { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } C_ ( ZZ>= ` 1 ) |
5 |
|
eldifsn |
|- ( b e. ( ( Poly ` QQ ) \ { 0p } ) <-> ( b e. ( Poly ` QQ ) /\ b =/= 0p ) ) |
6 |
5
|
biimpi |
|- ( b e. ( ( Poly ` QQ ) \ { 0p } ) -> ( b e. ( Poly ` QQ ) /\ b =/= 0p ) ) |
7 |
6
|
ad2antrr |
|- ( ( ( b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( b ` A ) = 0 ) /\ A e. CC ) -> ( b e. ( Poly ` QQ ) /\ b =/= 0p ) ) |
8 |
|
simpr |
|- ( ( ( b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( b ` A ) = 0 ) /\ A e. CC ) -> A e. CC ) |
9 |
|
simplr |
|- ( ( ( b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( b ` A ) = 0 ) /\ A e. CC ) -> ( b ` A ) = 0 ) |
10 |
|
dgrnznn |
|- ( ( ( b e. ( Poly ` QQ ) /\ b =/= 0p ) /\ ( A e. CC /\ ( b ` A ) = 0 ) ) -> ( deg ` b ) e. NN ) |
11 |
7 8 9 10
|
syl12anc |
|- ( ( ( b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( b ` A ) = 0 ) /\ A e. CC ) -> ( deg ` b ) e. NN ) |
12 |
|
simpll |
|- ( ( ( b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( b ` A ) = 0 ) /\ A e. CC ) -> b e. ( ( Poly ` QQ ) \ { 0p } ) ) |
13 |
|
eqid |
|- ( deg ` b ) = ( deg ` b ) |
14 |
9 13
|
jctil |
|- ( ( ( b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( b ` A ) = 0 ) /\ A e. CC ) -> ( ( deg ` b ) = ( deg ` b ) /\ ( b ` A ) = 0 ) ) |
15 |
|
eqeq2 |
|- ( a = ( deg ` b ) -> ( ( deg ` p ) = a <-> ( deg ` p ) = ( deg ` b ) ) ) |
16 |
15
|
anbi1d |
|- ( a = ( deg ` b ) -> ( ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) <-> ( ( deg ` p ) = ( deg ` b ) /\ ( p ` A ) = 0 ) ) ) |
17 |
|
fveqeq2 |
|- ( p = b -> ( ( deg ` p ) = ( deg ` b ) <-> ( deg ` b ) = ( deg ` b ) ) ) |
18 |
|
fveq1 |
|- ( p = b -> ( p ` A ) = ( b ` A ) ) |
19 |
18
|
eqeq1d |
|- ( p = b -> ( ( p ` A ) = 0 <-> ( b ` A ) = 0 ) ) |
20 |
17 19
|
anbi12d |
|- ( p = b -> ( ( ( deg ` p ) = ( deg ` b ) /\ ( p ` A ) = 0 ) <-> ( ( deg ` b ) = ( deg ` b ) /\ ( b ` A ) = 0 ) ) ) |
21 |
16 20
|
rspc2ev |
|- ( ( ( deg ` b ) e. NN /\ b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( ( deg ` b ) = ( deg ` b ) /\ ( b ` A ) = 0 ) ) -> E. a e. NN E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) ) |
22 |
11 12 14 21
|
syl3anc |
|- ( ( ( b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( b ` A ) = 0 ) /\ A e. CC ) -> E. a e. NN E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) ) |
23 |
22
|
ex |
|- ( ( b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( b ` A ) = 0 ) -> ( A e. CC -> E. a e. NN E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) ) ) |
24 |
23
|
rexlimiva |
|- ( E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( b ` A ) = 0 -> ( A e. CC -> E. a e. NN E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) ) ) |
25 |
24
|
impcom |
|- ( ( A e. CC /\ E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( b ` A ) = 0 ) -> E. a e. NN E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) ) |
26 |
|
elqaa |
|- ( A e. AA <-> ( A e. CC /\ E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( b ` A ) = 0 ) ) |
27 |
|
rabn0 |
|- ( { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } =/= (/) <-> E. a e. NN E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) ) |
28 |
25 26 27
|
3imtr4i |
|- ( A e. AA -> { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } =/= (/) ) |
29 |
|
infssuzcl |
|- ( ( { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } C_ ( ZZ>= ` 1 ) /\ { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } =/= (/) ) -> inf ( { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } , RR , < ) e. { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } ) |
30 |
4 28 29
|
sylancr |
|- ( A e. AA -> inf ( { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } , RR , < ) e. { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } ) |
31 |
1 30
|
eqeltrd |
|- ( A e. AA -> ( degAA ` A ) e. { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } ) |
32 |
|
eqeq2 |
|- ( a = ( degAA ` A ) -> ( ( deg ` p ) = a <-> ( deg ` p ) = ( degAA ` A ) ) ) |
33 |
32
|
anbi1d |
|- ( a = ( degAA ` A ) -> ( ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) <-> ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 ) ) ) |
34 |
33
|
rexbidv |
|- ( a = ( degAA ` A ) -> ( E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) <-> E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 ) ) ) |
35 |
34
|
elrab |
|- ( ( degAA ` A ) e. { a e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = a /\ ( p ` A ) = 0 ) } <-> ( ( degAA ` A ) e. NN /\ E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 ) ) ) |
36 |
31 35
|
sylib |
|- ( A e. AA -> ( ( degAA ` A ) e. NN /\ E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 ) ) ) |