Metamath Proof Explorer


Theorem dgraalem

Description: Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)

Ref Expression
Assertion dgraalem A 𝔸 deg 𝔸 A p Poly 0 𝑝 deg p = deg 𝔸 A p A = 0

Proof

Step Hyp Ref Expression
1 dgraaval A 𝔸 deg 𝔸 A = sup a | p Poly 0 𝑝 deg p = a p A = 0 <
2 ssrab2 a | p Poly 0 𝑝 deg p = a p A = 0
3 nnuz = 1
4 2 3 sseqtri a | p Poly 0 𝑝 deg p = a p A = 0 1
5 eldifsn b Poly 0 𝑝 b Poly b 0 𝑝
6 5 biimpi b Poly 0 𝑝 b Poly b 0 𝑝
7 6 ad2antrr b Poly 0 𝑝 b A = 0 A b Poly b 0 𝑝
8 simpr b Poly 0 𝑝 b A = 0 A A
9 simplr b Poly 0 𝑝 b A = 0 A b A = 0
10 dgrnznn b Poly b 0 𝑝 A b A = 0 deg b
11 7 8 9 10 syl12anc b Poly 0 𝑝 b A = 0 A deg b
12 simpll b Poly 0 𝑝 b A = 0 A b Poly 0 𝑝
13 eqid deg b = deg b
14 9 13 jctil b Poly 0 𝑝 b A = 0 A deg b = deg b b A = 0
15 eqeq2 a = deg b deg p = a deg p = deg b
16 15 anbi1d a = deg b deg p = a p A = 0 deg p = deg b p A = 0
17 fveqeq2 p = b deg p = deg b deg b = deg b
18 fveq1 p = b p A = b A
19 18 eqeq1d p = b p A = 0 b A = 0
20 17 19 anbi12d p = b deg p = deg b p A = 0 deg b = deg b b A = 0
21 16 20 rspc2ev deg b b Poly 0 𝑝 deg b = deg b b A = 0 a p Poly 0 𝑝 deg p = a p A = 0
22 11 12 14 21 syl3anc b Poly 0 𝑝 b A = 0 A a p Poly 0 𝑝 deg p = a p A = 0
23 22 ex b Poly 0 𝑝 b A = 0 A a p Poly 0 𝑝 deg p = a p A = 0
24 23 rexlimiva b Poly 0 𝑝 b A = 0 A a p Poly 0 𝑝 deg p = a p A = 0
25 24 impcom A b Poly 0 𝑝 b A = 0 a p Poly 0 𝑝 deg p = a p A = 0
26 elqaa A 𝔸 A b Poly 0 𝑝 b A = 0
27 rabn0 a | p Poly 0 𝑝 deg p = a p A = 0 a p Poly 0 𝑝 deg p = a p A = 0
28 25 26 27 3imtr4i A 𝔸 a | p Poly 0 𝑝 deg p = a p A = 0
29 infssuzcl a | p Poly 0 𝑝 deg p = a p A = 0 1 a | p Poly 0 𝑝 deg p = a p A = 0 sup a | p Poly 0 𝑝 deg p = a p A = 0 < a | p Poly 0 𝑝 deg p = a p A = 0
30 4 28 29 sylancr A 𝔸 sup a | p Poly 0 𝑝 deg p = a p A = 0 < a | p Poly 0 𝑝 deg p = a p A = 0
31 1 30 eqeltrd A 𝔸 deg 𝔸 A a | p Poly 0 𝑝 deg p = a p A = 0
32 eqeq2 a = deg 𝔸 A deg p = a deg p = deg 𝔸 A
33 32 anbi1d a = deg 𝔸 A deg p = a p A = 0 deg p = deg 𝔸 A p A = 0
34 33 rexbidv a = deg 𝔸 A p Poly 0 𝑝 deg p = a p A = 0 p Poly 0 𝑝 deg p = deg 𝔸 A p A = 0
35 34 elrab deg 𝔸 A a | p Poly 0 𝑝 deg p = a p A = 0 deg 𝔸 A p Poly 0 𝑝 deg p = deg 𝔸 A p A = 0
36 31 35 sylib A 𝔸 deg 𝔸 A p Poly 0 𝑝 deg p = deg 𝔸 A p A = 0