Description: Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dgraalem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dgraaval | |
|
2 | ssrab2 | |
|
3 | nnuz | |
|
4 | 2 3 | sseqtri | |
5 | eldifsn | |
|
6 | 5 | biimpi | |
7 | 6 | ad2antrr | |
8 | simpr | |
|
9 | simplr | |
|
10 | dgrnznn | |
|
11 | 7 8 9 10 | syl12anc | |
12 | simpll | |
|
13 | eqid | |
|
14 | 9 13 | jctil | |
15 | eqeq2 | |
|
16 | 15 | anbi1d | |
17 | fveqeq2 | |
|
18 | fveq1 | |
|
19 | 18 | eqeq1d | |
20 | 17 19 | anbi12d | |
21 | 16 20 | rspc2ev | |
22 | 11 12 14 21 | syl3anc | |
23 | 22 | ex | |
24 | 23 | rexlimiva | |
25 | 24 | impcom | |
26 | elqaa | |
|
27 | rabn0 | |
|
28 | 25 26 27 | 3imtr4i | |
29 | infssuzcl | |
|
30 | 4 28 29 | sylancr | |
31 | 1 30 | eqeltrd | |
32 | eqeq2 | |
|
33 | 32 | anbi1d | |
34 | 33 | rexbidv | |
35 | 34 | elrab | |
36 | 31 35 | sylib | |