Metamath Proof Explorer


Definition df-ply

Description: Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion df-ply Poly=x𝒫f|n0ax00f=zk=0nakzk

Detailed syntax breakdown

Step Hyp Ref Expression
0 cply classPoly
1 vx setvarx
2 cc class
3 2 cpw class𝒫
4 vf setvarf
5 vn setvarn
6 cn0 class0
7 va setvara
8 1 cv setvarx
9 cc0 class0
10 9 csn class0
11 8 10 cun classx0
12 cmap class𝑚
13 11 6 12 co classx00
14 4 cv setvarf
15 vz setvarz
16 vk setvark
17 cfz class
18 5 cv setvarn
19 9 18 17 co class0n
20 7 cv setvara
21 16 cv setvark
22 21 20 cfv classak
23 cmul class×
24 15 cv setvarz
25 cexp class^
26 24 21 25 co classzk
27 22 26 23 co classakzk
28 19 27 16 csu classk=0nakzk
29 15 2 28 cmpt classzk=0nakzk
30 14 29 wceq wfff=zk=0nakzk
31 30 7 13 wrex wffax00f=zk=0nakzk
32 31 5 6 wrex wffn0ax00f=zk=0nakzk
33 32 4 cab classf|n0ax00f=zk=0nakzk
34 1 3 33 cmpt classx𝒫f|n0ax00f=zk=0nakzk
35 0 34 wceq wffPoly=x𝒫f|n0ax00f=zk=0nakzk