| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cply |
|- Poly |
| 1 |
|
vx |
|- x |
| 2 |
|
cc |
|- CC |
| 3 |
2
|
cpw |
|- ~P CC |
| 4 |
|
vf |
|- f |
| 5 |
|
vn |
|- n |
| 6 |
|
cn0 |
|- NN0 |
| 7 |
|
va |
|- a |
| 8 |
1
|
cv |
|- x |
| 9 |
|
cc0 |
|- 0 |
| 10 |
9
|
csn |
|- { 0 } |
| 11 |
8 10
|
cun |
|- ( x u. { 0 } ) |
| 12 |
|
cmap |
|- ^m |
| 13 |
11 6 12
|
co |
|- ( ( x u. { 0 } ) ^m NN0 ) |
| 14 |
4
|
cv |
|- f |
| 15 |
|
vz |
|- z |
| 16 |
|
vk |
|- k |
| 17 |
|
cfz |
|- ... |
| 18 |
5
|
cv |
|- n |
| 19 |
9 18 17
|
co |
|- ( 0 ... n ) |
| 20 |
7
|
cv |
|- a |
| 21 |
16
|
cv |
|- k |
| 22 |
21 20
|
cfv |
|- ( a ` k ) |
| 23 |
|
cmul |
|- x. |
| 24 |
15
|
cv |
|- z |
| 25 |
|
cexp |
|- ^ |
| 26 |
24 21 25
|
co |
|- ( z ^ k ) |
| 27 |
22 26 23
|
co |
|- ( ( a ` k ) x. ( z ^ k ) ) |
| 28 |
19 27 16
|
csu |
|- sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) |
| 29 |
15 2 28
|
cmpt |
|- ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
| 30 |
14 29
|
wceq |
|- f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
| 31 |
30 7 13
|
wrex |
|- E. a e. ( ( x u. { 0 } ) ^m NN0 ) f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
| 32 |
31 5 6
|
wrex |
|- E. n e. NN0 E. a e. ( ( x u. { 0 } ) ^m NN0 ) f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
| 33 |
32 4
|
cab |
|- { f | E. n e. NN0 E. a e. ( ( x u. { 0 } ) ^m NN0 ) f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) } |
| 34 |
1 3 33
|
cmpt |
|- ( x e. ~P CC |-> { f | E. n e. NN0 E. a e. ( ( x u. { 0 } ) ^m NN0 ) f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) } ) |
| 35 |
0 34
|
wceq |
|- Poly = ( x e. ~P CC |-> { f | E. n e. NN0 E. a e. ( ( x u. { 0 } ) ^m NN0 ) f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) } ) |