| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cply |
⊢ Poly |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
2
|
cpw |
⊢ 𝒫 ℂ |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
|
vn |
⊢ 𝑛 |
| 6 |
|
cn0 |
⊢ ℕ0 |
| 7 |
|
va |
⊢ 𝑎 |
| 8 |
1
|
cv |
⊢ 𝑥 |
| 9 |
|
cc0 |
⊢ 0 |
| 10 |
9
|
csn |
⊢ { 0 } |
| 11 |
8 10
|
cun |
⊢ ( 𝑥 ∪ { 0 } ) |
| 12 |
|
cmap |
⊢ ↑m |
| 13 |
11 6 12
|
co |
⊢ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) |
| 14 |
4
|
cv |
⊢ 𝑓 |
| 15 |
|
vz |
⊢ 𝑧 |
| 16 |
|
vk |
⊢ 𝑘 |
| 17 |
|
cfz |
⊢ ... |
| 18 |
5
|
cv |
⊢ 𝑛 |
| 19 |
9 18 17
|
co |
⊢ ( 0 ... 𝑛 ) |
| 20 |
7
|
cv |
⊢ 𝑎 |
| 21 |
16
|
cv |
⊢ 𝑘 |
| 22 |
21 20
|
cfv |
⊢ ( 𝑎 ‘ 𝑘 ) |
| 23 |
|
cmul |
⊢ · |
| 24 |
15
|
cv |
⊢ 𝑧 |
| 25 |
|
cexp |
⊢ ↑ |
| 26 |
24 21 25
|
co |
⊢ ( 𝑧 ↑ 𝑘 ) |
| 27 |
22 26 23
|
co |
⊢ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) |
| 28 |
19 27 16
|
csu |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) |
| 29 |
15 2 28
|
cmpt |
⊢ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 30 |
14 29
|
wceq |
⊢ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 31 |
30 7 13
|
wrex |
⊢ ∃ 𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 32 |
31 5 6
|
wrex |
⊢ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 33 |
32 4
|
cab |
⊢ { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } |
| 34 |
1 3 33
|
cmpt |
⊢ ( 𝑥 ∈ 𝒫 ℂ ↦ { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |
| 35 |
0 34
|
wceq |
⊢ Poly = ( 𝑥 ∈ 𝒫 ℂ ↦ { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |