Metamath Proof Explorer


Theorem elqaa

Description: The set of numbers generated by the roots of polynomials in the rational numbers is the same as the set of algebraic numbers, which by elaa are defined only in terms of polynomials over the integers. (Contributed by Mario Carneiro, 23-Jul-2014) (Proof shortened by AV, 3-Oct-2020)

Ref Expression
Assertion elqaa A𝔸AfPoly0𝑝fA=0

Proof

Step Hyp Ref Expression
1 elaa A𝔸AfPoly0𝑝fA=0
2 zssq
3 qsscn
4 plyss PolyPoly
5 2 3 4 mp2an PolyPoly
6 ssdif PolyPolyPoly0𝑝Poly0𝑝
7 ssrexv Poly0𝑝Poly0𝑝fPoly0𝑝fA=0fPoly0𝑝fA=0
8 5 6 7 mp2b fPoly0𝑝fA=0fPoly0𝑝fA=0
9 8 anim2i AfPoly0𝑝fA=0AfPoly0𝑝fA=0
10 1 9 sylbi A𝔸AfPoly0𝑝fA=0
11 simpll AfPoly0𝑝fA=0A
12 simplr AfPoly0𝑝fA=0fPoly0𝑝
13 simpr AfPoly0𝑝fA=0fA=0
14 eqid coefff=coefff
15 fveq2 m=kcoefffm=coefffk
16 15 oveq1d m=kcoefffmj=coefffkj
17 16 eleq1d m=kcoefffmjcoefffkj
18 17 rabbidv m=kj|coefffmj=j|coefffkj
19 oveq2 j=ncoefffkj=coefffkn
20 19 eleq1d j=ncoefffkjcoefffkn
21 20 cbvrabv j|coefffkj=n|coefffkn
22 18 21 eqtrdi m=kj|coefffmj=n|coefffkn
23 22 infeq1d m=ksupj|coefffmj<=supn|coefffkn<
24 23 cbvmptv m0supj|coefffmj<=k0supn|coefffkn<
25 eqid seq0×m0supj|coefffmj<degf=seq0×m0supj|coefffmj<degf
26 11 12 13 14 24 25 elqaalem3 AfPoly0𝑝fA=0A𝔸
27 26 r19.29an AfPoly0𝑝fA=0A𝔸
28 10 27 impbii A𝔸AfPoly0𝑝fA=0