Metamath Proof Explorer


Theorem qaa

Description: Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion qaa AA𝔸

Proof

Step Hyp Ref Expression
1 qcn AA
2 qsscn
3 1z 1
4 zq 11
5 3 4 ax-mp 1
6 plyid 1XpPoly
7 2 5 6 mp2an XpPoly
8 7 a1i AXpPoly
9 plyconst A×APoly
10 2 9 mpan A×APoly
11 qaddcl xyx+y
12 11 adantl Axyx+y
13 qmulcl xyxy
14 13 adantl Axyxy
15 qnegcl 11
16 5 15 ax-mp 1
17 16 a1i A1
18 8 10 12 14 17 plysub AXpf×APoly
19 peano2cn AA+1
20 1 19 syl AA+1
21 fnresi IFn
22 df-idp Xp=I
23 22 fneq1i XpFnIFn
24 21 23 mpbir XpFn
25 24 a1i AXpFn
26 fnconstg A×AFn
27 cnex V
28 27 a1i AV
29 inidm =
30 22 fveq1i XpA+1=IA+1
31 fvresi A+1IA+1=A+1
32 30 31 eqtrid A+1XpA+1=A+1
33 32 adantl AA+1XpA+1=A+1
34 fvconst2g AA+1×AA+1=A
35 25 26 28 28 29 33 34 ofval AA+1Xpf×AA+1=A+1-A
36 20 35 mpdan AXpf×AA+1=A+1-A
37 ax-1cn 1
38 pncan2 A1A+1-A=1
39 1 37 38 sylancl AA+1-A=1
40 36 39 eqtrd AXpf×AA+1=1
41 ax-1ne0 10
42 41 a1i A10
43 40 42 eqnetrd AXpf×AA+10
44 ne0p A+1Xpf×AA+10Xpf×A0𝑝
45 20 43 44 syl2anc AXpf×A0𝑝
46 eldifsn Xpf×APoly0𝑝Xpf×APolyXpf×A0𝑝
47 18 45 46 sylanbrc AXpf×APoly0𝑝
48 22 fveq1i XpA=IA
49 fvresi AIA=A
50 48 49 eqtrid AXpA=A
51 50 adantl AAXpA=A
52 fvconst2g AA×AA=A
53 25 26 28 28 29 51 52 ofval AAXpf×AA=AA
54 1 53 mpdan AXpf×AA=AA
55 1 subidd AAA=0
56 54 55 eqtrd AXpf×AA=0
57 fveq1 f=Xpf×AfA=Xpf×AA
58 57 eqeq1d f=Xpf×AfA=0Xpf×AA=0
59 58 rspcev Xpf×APoly0𝑝Xpf×AA=0fPoly0𝑝fA=0
60 47 56 59 syl2anc AfPoly0𝑝fA=0
61 elqaa A𝔸AfPoly0𝑝fA=0
62 1 60 61 sylanbrc AA𝔸