Metamath Proof Explorer


Theorem plyconst

Description: A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion plyconst SAS×APolyS

Proof

Step Hyp Ref Expression
1 exp0 zz0=1
2 1 adantl SASzz0=1
3 2 oveq2d SASzAz0=A1
4 ssel2 SASA
5 4 adantr SASzA
6 5 mulridd SASzA1=A
7 3 6 eqtrd SASzAz0=A
8 7 mpteq2dva SASzAz0=zA
9 fconstmpt ×A=zA
10 8 9 eqtr4di SASzAz0=×A
11 0nn0 00
12 eqid zAz0=zAz0
13 12 ply1term SAS00zAz0PolyS
14 11 13 mp3an3 SASzAz0PolyS
15 10 14 eqeltrrd SAS×APolyS