Metamath Proof Explorer


Theorem ply1term

Description: A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Hypothesis ply1term.1 F=zAzN
Assertion ply1term SASN0FPolyS

Proof

Step Hyp Ref Expression
1 ply1term.1 F=zAzN
2 ssel2 SASA
3 1 ply1termlem AN0F=zk=0Nifk=NA0zk
4 2 3 stoic3 SASN0F=zk=0Nifk=NA0zk
5 simp1 SASN0S
6 0cnd SASN00
7 6 snssd SASN00
8 5 7 unssd SASN0S0
9 simp3 SASN0N0
10 simpl2 SASN0k0NAS
11 elun1 ASAS0
12 10 11 syl SASN0k0NAS0
13 ssun2 0S0
14 c0ex 0V
15 14 snss 0S00S0
16 13 15 mpbir 0S0
17 ifcl AS00S0ifk=NA0S0
18 12 16 17 sylancl SASN0k0Nifk=NA0S0
19 8 9 18 elplyd SASN0zk=0Nifk=NA0zkPolyS0
20 4 19 eqeltrd SASN0FPolyS0
21 plyun0 PolyS0=PolyS
22 20 21 eleqtrdi SASN0FPolyS