Metamath Proof Explorer


Theorem plypow

Description: A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion plypow S1SN0zzNPolyS

Proof

Step Hyp Ref Expression
1 id zz
2 simp3 S1SN0N0
3 expcl zN0zN
4 1 2 3 syl2anr S1SN0zzN
5 4 mullidd S1SN0z1zN=zN
6 5 mpteq2dva S1SN0z1zN=zzN
7 eqid z1zN=z1zN
8 7 ply1term S1SN0z1zNPolyS
9 6 8 eqeltrrd S1SN0zzNPolyS