| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑧 ∈ ℂ → 𝑧 ∈ ℂ ) |
| 2 |
|
simp3 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 3 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑁 ) ∈ ℂ ) |
| 4 |
1 2 3
|
syl2anr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ 𝑁 ) ∈ ℂ ) |
| 5 |
4
|
mullidd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( 1 · ( 𝑧 ↑ 𝑁 ) ) = ( 𝑧 ↑ 𝑁 ) ) |
| 6 |
5
|
mpteq2dva |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 𝑁 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑁 ) ) ) |
| 7 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 𝑁 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 𝑁 ) ) ) |
| 8 |
7
|
ply1term |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 𝑁 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 9 |
6 8
|
eqeltrrd |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑁 ) ) ∈ ( Poly ‘ 𝑆 ) ) |