| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elplyd.1 |
|
| 2 |
|
elplyd.2 |
|
| 3 |
|
elplyd.3 |
|
| 4 |
|
fveq2 |
|
| 5 |
|
oveq2 |
|
| 6 |
4 5
|
oveq12d |
|
| 7 |
|
nffvmpt1 |
|
| 8 |
|
nfcv |
|
| 9 |
|
nfcv |
|
| 10 |
7 8 9
|
nfov |
|
| 11 |
|
nfcv |
|
| 12 |
6 10 11
|
cbvsum |
|
| 13 |
|
elfznn0 |
|
| 14 |
|
iftrue |
|
| 15 |
14
|
adantl |
|
| 16 |
15 3
|
eqeltrd |
|
| 17 |
|
eqid |
|
| 18 |
17
|
fvmpt2 |
|
| 19 |
13 16 18
|
syl2an2 |
|
| 20 |
19 15
|
eqtrd |
|
| 21 |
20
|
oveq1d |
|
| 22 |
21
|
sumeq2dv |
|
| 23 |
12 22
|
eqtrid |
|
| 24 |
23
|
mpteq2dv |
|
| 25 |
|
0cnd |
|
| 26 |
25
|
snssd |
|
| 27 |
1 26
|
unssd |
|
| 28 |
|
elun1 |
|
| 29 |
3 28
|
syl |
|
| 30 |
29
|
adantlr |
|
| 31 |
|
ssun2 |
|
| 32 |
|
c0ex |
|
| 33 |
32
|
snss |
|
| 34 |
31 33
|
mpbir |
|
| 35 |
34
|
a1i |
|
| 36 |
30 35
|
ifclda |
|
| 37 |
36
|
fmpttd |
|
| 38 |
|
elplyr |
|
| 39 |
27 2 37 38
|
syl3anc |
|
| 40 |
24 39
|
eqeltrrd |
|
| 41 |
|
plyun0 |
|
| 42 |
40 41
|
eleqtrdi |
|