Step |
Hyp |
Ref |
Expression |
1 |
|
elplyd.1 |
|
2 |
|
elplyd.2 |
|
3 |
|
elplyd.3 |
|
4 |
|
nffvmpt1 |
|
5 |
|
nfcv |
|
6 |
|
nfcv |
|
7 |
4 5 6
|
nfov |
|
8 |
|
nfcv |
|
9 |
|
fveq2 |
|
10 |
|
oveq2 |
|
11 |
9 10
|
oveq12d |
|
12 |
7 8 11
|
cbvsumi |
|
13 |
|
elfznn0 |
|
14 |
|
iftrue |
|
15 |
14
|
adantl |
|
16 |
15 3
|
eqeltrd |
|
17 |
|
eqid |
|
18 |
17
|
fvmpt2 |
|
19 |
13 16 18
|
syl2an2 |
|
20 |
19 15
|
eqtrd |
|
21 |
20
|
oveq1d |
|
22 |
21
|
sumeq2dv |
|
23 |
12 22
|
eqtrid |
|
24 |
23
|
mpteq2dv |
|
25 |
|
0cnd |
|
26 |
25
|
snssd |
|
27 |
1 26
|
unssd |
|
28 |
|
elun1 |
|
29 |
3 28
|
syl |
|
30 |
29
|
adantlr |
|
31 |
|
ssun2 |
|
32 |
|
c0ex |
|
33 |
32
|
snss |
|
34 |
31 33
|
mpbir |
|
35 |
34
|
a1i |
|
36 |
30 35
|
ifclda |
|
37 |
36
|
fmpttd |
|
38 |
|
elplyr |
|
39 |
27 2 37 38
|
syl3anc |
|
40 |
24 39
|
eqeltrrd |
|
41 |
|
plyun0 |
|
42 |
40 41
|
eleqtrdi |
|