Step |
Hyp |
Ref |
Expression |
1 |
|
elplyd.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
elplyd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
|
elplyd.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ 𝑆 ) |
4 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑗 ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑘 · |
6 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑧 ↑ 𝑗 ) |
7 |
4 5 6
|
nfov |
⊢ Ⅎ 𝑘 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑗 ) · ( 𝑧 ↑ 𝑗 ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑗 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑘 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑧 ↑ 𝑗 ) = ( 𝑧 ↑ 𝑘 ) ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑗 ) · ( 𝑧 ↑ 𝑗 ) ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
12 |
7 8 11
|
cbvsumi |
⊢ Σ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑗 ) · ( 𝑧 ↑ 𝑗 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) |
13 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
14 |
|
iftrue |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) = 𝐴 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) = 𝐴 ) |
16 |
15 3
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ∈ 𝑆 ) |
17 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) |
18 |
17
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ∈ 𝑆 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) |
19 |
13 16 18
|
syl2an2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) |
20 |
19 15
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑘 ) = 𝐴 ) |
21 |
20
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( 𝐴 · ( 𝑧 ↑ 𝑘 ) ) ) |
22 |
21
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐴 · ( 𝑧 ↑ 𝑘 ) ) ) |
23 |
12 22
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑗 ) · ( 𝑧 ↑ 𝑗 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐴 · ( 𝑧 ↑ 𝑘 ) ) ) |
24 |
23
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑗 ) · ( 𝑧 ↑ 𝑗 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐴 · ( 𝑧 ↑ 𝑘 ) ) ) ) |
25 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
26 |
25
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
27 |
1 26
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
28 |
|
elun1 |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ ( 𝑆 ∪ { 0 } ) ) |
29 |
3 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ ( 𝑆 ∪ { 0 } ) ) |
30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ ( 𝑆 ∪ { 0 } ) ) |
31 |
|
ssun2 |
⊢ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) |
32 |
|
c0ex |
⊢ 0 ∈ V |
33 |
32
|
snss |
⊢ ( 0 ∈ ( 𝑆 ∪ { 0 } ) ↔ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) ) |
34 |
31 33
|
mpbir |
⊢ 0 ∈ ( 𝑆 ∪ { 0 } ) |
35 |
34
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 0 ∈ ( 𝑆 ∪ { 0 } ) ) |
36 |
30 35
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
37 |
36
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
38 |
|
elplyr |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑗 ) · ( 𝑧 ↑ 𝑗 ) ) ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
39 |
27 2 37 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 ∈ ( 0 ... 𝑁 ) , 𝐴 , 0 ) ) ‘ 𝑗 ) · ( 𝑧 ↑ 𝑗 ) ) ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
40 |
24 39
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐴 · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
41 |
|
plyun0 |
⊢ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) = ( Poly ‘ 𝑆 ) |
42 |
40 41
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐴 · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |