| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → 𝑆 ⊆ ℂ ) |
| 2 |
|
simp2 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → 𝑁 ∈ ℕ0 ) |
| 3 |
|
simp3 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → 𝐴 : ℕ0 ⟶ 𝑆 ) |
| 4 |
|
ssun1 |
⊢ 𝑆 ⊆ ( 𝑆 ∪ { 0 } ) |
| 5 |
|
fss |
⊢ ( ( 𝐴 : ℕ0 ⟶ 𝑆 ∧ 𝑆 ⊆ ( 𝑆 ∪ { 0 } ) ) → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 7 |
|
0cnd |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → 0 ∈ ℂ ) |
| 8 |
7
|
snssd |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → { 0 } ⊆ ℂ ) |
| 9 |
1 8
|
unssd |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
| 10 |
|
cnex |
⊢ ℂ ∈ V |
| 11 |
|
ssexg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ ℂ ∈ V ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
| 13 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 14 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
| 15 |
12 13 14
|
sylancl |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
| 16 |
6 15
|
mpbird |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
| 17 |
|
eqidd |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
| 19 |
18
|
sumeq1d |
⊢ ( 𝑛 = 𝑁 → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 21 |
20
|
eqeq2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 22 |
|
fveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 24 |
23
|
sumeq2sdv |
⊢ ( 𝑎 = 𝐴 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 25 |
24
|
mpteq2dv |
⊢ ( 𝑎 = 𝐴 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 26 |
25
|
eqeq2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 27 |
21 26
|
rspc2ev |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 28 |
2 16 17 27
|
syl3anc |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 29 |
|
elply |
⊢ ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 30 |
1 28 29
|
sylanbrc |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |