Metamath Proof Explorer


Theorem elplyr

Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion elplyr SN0A:0Szk=0NAkzkPolyS

Proof

Step Hyp Ref Expression
1 simp1 SN0A:0SS
2 simp2 SN0A:0SN0
3 simp3 SN0A:0SA:0S
4 ssun1 SS0
5 fss A:0SSS0A:0S0
6 3 4 5 sylancl SN0A:0SA:0S0
7 0cnd SN0A:0S0
8 7 snssd SN0A:0S0
9 1 8 unssd SN0A:0SS0
10 cnex V
11 ssexg S0VS0V
12 9 10 11 sylancl SN0A:0SS0V
13 nn0ex 0V
14 elmapg S0V0VAS00A:0S0
15 12 13 14 sylancl SN0A:0SAS00A:0S0
16 6 15 mpbird SN0A:0SAS00
17 eqidd SN0A:0Szk=0NAkzk=zk=0NAkzk
18 oveq2 n=N0n=0N
19 18 sumeq1d n=Nk=0nakzk=k=0Nakzk
20 19 mpteq2dv n=Nzk=0nakzk=zk=0Nakzk
21 20 eqeq2d n=Nzk=0NAkzk=zk=0nakzkzk=0NAkzk=zk=0Nakzk
22 fveq1 a=Aak=Ak
23 22 oveq1d a=Aakzk=Akzk
24 23 sumeq2sdv a=Ak=0Nakzk=k=0NAkzk
25 24 mpteq2dv a=Azk=0Nakzk=zk=0NAkzk
26 25 eqeq2d a=Azk=0NAkzk=zk=0Nakzkzk=0NAkzk=zk=0NAkzk
27 21 26 rspc2ev N0AS00zk=0NAkzk=zk=0NAkzkn0aS00zk=0NAkzk=zk=0nakzk
28 2 16 17 27 syl3anc SN0A:0Sn0aS00zk=0NAkzk=zk=0nakzk
29 elply zk=0NAkzkPolySSn0aS00zk=0NAkzk=zk=0nakzk
30 1 28 29 sylanbrc SN0A:0Szk=0NAkzkPolyS