Metamath Proof Explorer


Theorem elply

Description: Definition of a polynomial with coefficients in S . (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion elply FPolySSn0aS00F=zk=0nakzk

Proof

Step Hyp Ref Expression
1 plybss FPolySS
2 plyval SPolyS=f|n0aS00f=zk=0nakzk
3 2 eleq2d SFPolySFf|n0aS00f=zk=0nakzk
4 id F=zk=0nakzkF=zk=0nakzk
5 cnex V
6 5 mptex zk=0nakzkV
7 4 6 eqeltrdi F=zk=0nakzkFV
8 7 a1i n0aS00F=zk=0nakzkFV
9 8 rexlimivv n0aS00F=zk=0nakzkFV
10 eqeq1 f=Ff=zk=0nakzkF=zk=0nakzk
11 10 2rexbidv f=Fn0aS00f=zk=0nakzkn0aS00F=zk=0nakzk
12 9 11 elab3 Ff|n0aS00f=zk=0nakzkn0aS00F=zk=0nakzk
13 3 12 bitrdi SFPolySn0aS00F=zk=0nakzk
14 1 13 biadanii FPolySSn0aS00F=zk=0nakzk