| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elply |
|
| 2 |
|
simpr |
|
| 3 |
|
simpll |
|
| 4 |
|
cnex |
|
| 5 |
|
ssexg |
|
| 6 |
3 4 5
|
sylancl |
|
| 7 |
|
snex |
|
| 8 |
|
unexg |
|
| 9 |
6 7 8
|
sylancl |
|
| 10 |
|
nn0ex |
|
| 11 |
|
elmapg |
|
| 12 |
9 10 11
|
sylancl |
|
| 13 |
2 12
|
mpbid |
|
| 14 |
13
|
ffvelcdmda |
|
| 15 |
|
ssun2 |
|
| 16 |
|
c0ex |
|
| 17 |
16
|
snss |
|
| 18 |
15 17
|
mpbir |
|
| 19 |
|
ifcl |
|
| 20 |
14 18 19
|
sylancl |
|
| 21 |
20
|
fmpttd |
|
| 22 |
|
elmapg |
|
| 23 |
9 10 22
|
sylancl |
|
| 24 |
21 23
|
mpbird |
|
| 25 |
|
eleq1w |
|
| 26 |
|
fveq2 |
|
| 27 |
25 26
|
ifbieq1d |
|
| 28 |
|
eqid |
|
| 29 |
|
fvex |
|
| 30 |
29 16
|
ifex |
|
| 31 |
27 28 30
|
fvmpt |
|
| 32 |
31
|
ad2antll |
|
| 33 |
|
iffalse |
|
| 34 |
33
|
eqeq2d |
|
| 35 |
32 34
|
syl5ibcom |
|
| 36 |
35
|
necon1ad |
|
| 37 |
|
elfzle2 |
|
| 38 |
36 37
|
syl6 |
|
| 39 |
38
|
anassrs |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
|
simplr |
|
| 42 |
|
0cnd |
|
| 43 |
42
|
snssd |
|
| 44 |
3 43
|
unssd |
|
| 45 |
21 44
|
fssd |
|
| 46 |
|
plyco0 |
|
| 47 |
41 45 46
|
syl2anc |
|
| 48 |
40 47
|
mpbird |
|
| 49 |
|
eqidd |
|
| 50 |
|
imaeq1 |
|
| 51 |
50
|
eqeq1d |
|
| 52 |
|
fveq1 |
|
| 53 |
|
elfznn0 |
|
| 54 |
53 31
|
syl |
|
| 55 |
|
iftrue |
|
| 56 |
54 55
|
eqtrd |
|
| 57 |
52 56
|
sylan9eq |
|
| 58 |
57
|
oveq1d |
|
| 59 |
58
|
sumeq2dv |
|
| 60 |
59
|
mpteq2dv |
|
| 61 |
60
|
eqeq2d |
|
| 62 |
51 61
|
anbi12d |
|
| 63 |
62
|
rspcev |
|
| 64 |
24 48 49 63
|
syl12anc |
|
| 65 |
|
eqeq1 |
|
| 66 |
65
|
anbi2d |
|
| 67 |
66
|
rexbidv |
|
| 68 |
64 67
|
syl5ibrcom |
|
| 69 |
68
|
rexlimdva |
|
| 70 |
69
|
reximdva |
|
| 71 |
70
|
imdistani |
|
| 72 |
1 71
|
sylbi |
|
| 73 |
|
simpr |
|
| 74 |
73
|
reximi |
|
| 75 |
74
|
reximi |
|
| 76 |
75
|
anim2i |
|
| 77 |
|
elply |
|
| 78 |
76 77
|
sylibr |
|
| 79 |
72 78
|
impbii |
|