Metamath Proof Explorer


Theorem sumeq2sdv

Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006) (Proof shortened by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypothesis sumeq2sdv.1 φB=C
Assertion sumeq2sdv φkAB=kAC

Proof

Step Hyp Ref Expression
1 sumeq2sdv.1 φB=C
2 1 ralrimivw φkAB=C
3 2 sumeq2d φkAB=kAC