Step |
Hyp |
Ref |
Expression |
1 |
|
ply1term.1 |
|
2 |
|
simplr |
|
3 |
|
nn0uz |
|
4 |
2 3
|
eleqtrdi |
|
5 |
|
fzss1 |
|
6 |
4 5
|
syl |
|
7 |
|
elfz1eq |
|
8 |
7
|
adantl |
|
9 |
|
iftrue |
|
10 |
8 9
|
syl |
|
11 |
|
simpll |
|
12 |
11
|
adantr |
|
13 |
10 12
|
eqeltrd |
|
14 |
|
simplr |
|
15 |
2
|
adantr |
|
16 |
8 15
|
eqeltrd |
|
17 |
14 16
|
expcld |
|
18 |
13 17
|
mulcld |
|
19 |
|
eldifn |
|
20 |
19
|
adantl |
|
21 |
2
|
adantr |
|
22 |
21
|
nn0zd |
|
23 |
|
fzsn |
|
24 |
23
|
eleq2d |
|
25 |
|
elsn2g |
|
26 |
24 25
|
bitrd |
|
27 |
22 26
|
syl |
|
28 |
20 27
|
mtbid |
|
29 |
28
|
iffalsed |
|
30 |
29
|
oveq1d |
|
31 |
|
simpr |
|
32 |
|
eldifi |
|
33 |
|
elfznn0 |
|
34 |
32 33
|
syl |
|
35 |
|
expcl |
|
36 |
31 34 35
|
syl2an |
|
37 |
36
|
mul02d |
|
38 |
30 37
|
eqtrd |
|
39 |
|
fzfid |
|
40 |
6 18 38 39
|
fsumss |
|
41 |
2
|
nn0zd |
|
42 |
31 2
|
expcld |
|
43 |
11 42
|
mulcld |
|
44 |
|
oveq2 |
|
45 |
9 44
|
oveq12d |
|
46 |
45
|
fsum1 |
|
47 |
41 43 46
|
syl2anc |
|
48 |
40 47
|
eqtr3d |
|
49 |
48
|
mpteq2dva |
|
50 |
1 49
|
eqtr4id |
|