| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1term.1 |
|
| 2 |
|
simplr |
|
| 3 |
|
nn0uz |
|
| 4 |
2 3
|
eleqtrdi |
|
| 5 |
|
fzss1 |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
elfz1eq |
|
| 8 |
7
|
adantl |
|
| 9 |
|
iftrue |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
simpll |
|
| 12 |
11
|
adantr |
|
| 13 |
10 12
|
eqeltrd |
|
| 14 |
|
simplr |
|
| 15 |
2
|
adantr |
|
| 16 |
8 15
|
eqeltrd |
|
| 17 |
14 16
|
expcld |
|
| 18 |
13 17
|
mulcld |
|
| 19 |
|
eldifn |
|
| 20 |
19
|
adantl |
|
| 21 |
2
|
adantr |
|
| 22 |
21
|
nn0zd |
|
| 23 |
|
fzsn |
|
| 24 |
23
|
eleq2d |
|
| 25 |
|
elsn2g |
|
| 26 |
24 25
|
bitrd |
|
| 27 |
22 26
|
syl |
|
| 28 |
20 27
|
mtbid |
|
| 29 |
28
|
iffalsed |
|
| 30 |
29
|
oveq1d |
|
| 31 |
|
simpr |
|
| 32 |
|
eldifi |
|
| 33 |
|
elfznn0 |
|
| 34 |
32 33
|
syl |
|
| 35 |
|
expcl |
|
| 36 |
31 34 35
|
syl2an |
|
| 37 |
36
|
mul02d |
|
| 38 |
30 37
|
eqtrd |
|
| 39 |
|
fzfid |
|
| 40 |
6 18 38 39
|
fsumss |
|
| 41 |
2
|
nn0zd |
|
| 42 |
31 2
|
expcld |
|
| 43 |
11 42
|
mulcld |
|
| 44 |
|
oveq2 |
|
| 45 |
9 44
|
oveq12d |
|
| 46 |
45
|
fsum1 |
|
| 47 |
41 43 46
|
syl2anc |
|
| 48 |
40 47
|
eqtr3d |
|
| 49 |
48
|
mpteq2dva |
|
| 50 |
1 49
|
eqtr4id |
|