Step |
Hyp |
Ref |
Expression |
1 |
|
ply1term.1 |
|- F = ( z e. CC |-> ( A x. ( z ^ N ) ) ) |
2 |
|
simplr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> N e. NN0 ) |
3 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
4 |
2 3
|
eleqtrdi |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> N e. ( ZZ>= ` 0 ) ) |
5 |
|
fzss1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( N ... N ) C_ ( 0 ... N ) ) |
6 |
4 5
|
syl |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> ( N ... N ) C_ ( 0 ... N ) ) |
7 |
|
elfz1eq |
|- ( k e. ( N ... N ) -> k = N ) |
8 |
7
|
adantl |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( N ... N ) ) -> k = N ) |
9 |
|
iftrue |
|- ( k = N -> if ( k = N , A , 0 ) = A ) |
10 |
8 9
|
syl |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( N ... N ) ) -> if ( k = N , A , 0 ) = A ) |
11 |
|
simpll |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> A e. CC ) |
12 |
11
|
adantr |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( N ... N ) ) -> A e. CC ) |
13 |
10 12
|
eqeltrd |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( N ... N ) ) -> if ( k = N , A , 0 ) e. CC ) |
14 |
|
simplr |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( N ... N ) ) -> z e. CC ) |
15 |
2
|
adantr |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( N ... N ) ) -> N e. NN0 ) |
16 |
8 15
|
eqeltrd |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( N ... N ) ) -> k e. NN0 ) |
17 |
14 16
|
expcld |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( N ... N ) ) -> ( z ^ k ) e. CC ) |
18 |
13 17
|
mulcld |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( N ... N ) ) -> ( if ( k = N , A , 0 ) x. ( z ^ k ) ) e. CC ) |
19 |
|
eldifn |
|- ( k e. ( ( 0 ... N ) \ ( N ... N ) ) -> -. k e. ( N ... N ) ) |
20 |
19
|
adantl |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> -. k e. ( N ... N ) ) |
21 |
2
|
adantr |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> N e. NN0 ) |
22 |
21
|
nn0zd |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> N e. ZZ ) |
23 |
|
fzsn |
|- ( N e. ZZ -> ( N ... N ) = { N } ) |
24 |
23
|
eleq2d |
|- ( N e. ZZ -> ( k e. ( N ... N ) <-> k e. { N } ) ) |
25 |
|
elsn2g |
|- ( N e. ZZ -> ( k e. { N } <-> k = N ) ) |
26 |
24 25
|
bitrd |
|- ( N e. ZZ -> ( k e. ( N ... N ) <-> k = N ) ) |
27 |
22 26
|
syl |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> ( k e. ( N ... N ) <-> k = N ) ) |
28 |
20 27
|
mtbid |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> -. k = N ) |
29 |
28
|
iffalsed |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> if ( k = N , A , 0 ) = 0 ) |
30 |
29
|
oveq1d |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> ( if ( k = N , A , 0 ) x. ( z ^ k ) ) = ( 0 x. ( z ^ k ) ) ) |
31 |
|
simpr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> z e. CC ) |
32 |
|
eldifi |
|- ( k e. ( ( 0 ... N ) \ ( N ... N ) ) -> k e. ( 0 ... N ) ) |
33 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
34 |
32 33
|
syl |
|- ( k e. ( ( 0 ... N ) \ ( N ... N ) ) -> k e. NN0 ) |
35 |
|
expcl |
|- ( ( z e. CC /\ k e. NN0 ) -> ( z ^ k ) e. CC ) |
36 |
31 34 35
|
syl2an |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> ( z ^ k ) e. CC ) |
37 |
36
|
mul02d |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> ( 0 x. ( z ^ k ) ) = 0 ) |
38 |
30 37
|
eqtrd |
|- ( ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( N ... N ) ) ) -> ( if ( k = N , A , 0 ) x. ( z ^ k ) ) = 0 ) |
39 |
|
fzfid |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> ( 0 ... N ) e. Fin ) |
40 |
6 18 38 39
|
fsumss |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> sum_ k e. ( N ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) ) |
41 |
2
|
nn0zd |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> N e. ZZ ) |
42 |
31 2
|
expcld |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> ( z ^ N ) e. CC ) |
43 |
11 42
|
mulcld |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> ( A x. ( z ^ N ) ) e. CC ) |
44 |
|
oveq2 |
|- ( k = N -> ( z ^ k ) = ( z ^ N ) ) |
45 |
9 44
|
oveq12d |
|- ( k = N -> ( if ( k = N , A , 0 ) x. ( z ^ k ) ) = ( A x. ( z ^ N ) ) ) |
46 |
45
|
fsum1 |
|- ( ( N e. ZZ /\ ( A x. ( z ^ N ) ) e. CC ) -> sum_ k e. ( N ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) = ( A x. ( z ^ N ) ) ) |
47 |
41 43 46
|
syl2anc |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> sum_ k e. ( N ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) = ( A x. ( z ^ N ) ) ) |
48 |
40 47
|
eqtr3d |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ z e. CC ) -> sum_ k e. ( 0 ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) = ( A x. ( z ^ N ) ) ) |
49 |
48
|
mpteq2dva |
|- ( ( A e. CC /\ N e. NN0 ) -> ( z e. CC |-> sum_ k e. ( 0 ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) ) = ( z e. CC |-> ( A x. ( z ^ N ) ) ) ) |
50 |
1 49
|
eqtr4id |
|- ( ( A e. CC /\ N e. NN0 ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( if ( k = N , A , 0 ) x. ( z ^ k ) ) ) ) |