Metamath Proof Explorer


Theorem plysub

Description: The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014)

Ref Expression
Hypotheses plyadd.1 φFPolyS
plyadd.2 φGPolyS
plyadd.3 φxSySx+yS
plymul.4 φxSySxyS
plysub.5 φ1S
Assertion plysub φFfGPolyS

Proof

Step Hyp Ref Expression
1 plyadd.1 φFPolyS
2 plyadd.2 φGPolyS
3 plyadd.3 φxSySx+yS
4 plymul.4 φxSySxyS
5 plysub.5 φ1S
6 cnex V
7 plyf FPolySF:
8 1 7 syl φF:
9 plyf GPolySG:
10 2 9 syl φG:
11 ofnegsub VF:G:F+f×1×fG=FfG
12 6 8 10 11 mp3an2i φF+f×1×fG=FfG
13 plybss FPolySS
14 1 13 syl φS
15 plyconst S1S×1PolyS
16 14 5 15 syl2anc φ×1PolyS
17 16 2 3 4 plymul φ×1×fGPolyS
18 1 17 3 plyadd φF+f×1×fGPolyS
19 12 18 eqeltrrd φFfGPolyS