Metamath Proof Explorer


Theorem plyf

Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion plyf FPolySF:

Proof

Step Hyp Ref Expression
1 elply FPolySSn0aS00F=zk=0nakzk
2 1 simprbi FPolySn0aS00F=zk=0nakzk
3 fzfid FPolySn0aS00z0nFin
4 plybss FPolySS
5 0cnd FPolyS0
6 5 snssd FPolyS0
7 4 6 unssd FPolySS0
8 7 ad2antrr FPolySn0aS00zS0
9 8 adantr FPolySn0aS00zk0nS0
10 simplrr FPolySn0aS00zaS00
11 cnex V
12 ssexg S0VS0V
13 8 11 12 sylancl FPolySn0aS00zS0V
14 nn0ex 0V
15 elmapg S0V0VaS00a:0S0
16 13 14 15 sylancl FPolySn0aS00zaS00a:0S0
17 10 16 mpbid FPolySn0aS00za:0S0
18 elfznn0 k0nk0
19 ffvelcdm a:0S0k0akS0
20 17 18 19 syl2an FPolySn0aS00zk0nakS0
21 9 20 sseldd FPolySn0aS00zk0nak
22 simpr FPolySn0aS00zz
23 expcl zk0zk
24 22 18 23 syl2an FPolySn0aS00zk0nzk
25 21 24 mulcld FPolySn0aS00zk0nakzk
26 3 25 fsumcl FPolySn0aS00zk=0nakzk
27 26 fmpttd FPolySn0aS00zk=0nakzk:
28 feq1 F=zk=0nakzkF:zk=0nakzk:
29 27 28 syl5ibrcom FPolySn0aS00F=zk=0nakzkF:
30 29 rexlimdvva FPolySn0aS00F=zk=0nakzkF:
31 2 30 mpd FPolySF: