| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyadd.1 |
|
| 2 |
|
plyadd.2 |
|
| 3 |
|
plyadd.3 |
|
| 4 |
|
plymul.4 |
|
| 5 |
|
elply2 |
|
| 6 |
5
|
simprbi |
|
| 7 |
1 6
|
syl |
|
| 8 |
|
elply2 |
|
| 9 |
8
|
simprbi |
|
| 10 |
2 9
|
syl |
|
| 11 |
|
reeanv |
|
| 12 |
|
reeanv |
|
| 13 |
|
simp1l |
|
| 14 |
13 1
|
syl |
|
| 15 |
13 2
|
syl |
|
| 16 |
13 3
|
sylan |
|
| 17 |
|
simp1rl |
|
| 18 |
|
simp1rr |
|
| 19 |
|
simp2l |
|
| 20 |
|
simp2r |
|
| 21 |
|
simp3ll |
|
| 22 |
|
simp3rl |
|
| 23 |
|
simp3lr |
|
| 24 |
|
oveq1 |
|
| 25 |
24
|
oveq2d |
|
| 26 |
25
|
sumeq2sdv |
|
| 27 |
|
fveq2 |
|
| 28 |
|
oveq2 |
|
| 29 |
27 28
|
oveq12d |
|
| 30 |
29
|
cbvsumv |
|
| 31 |
26 30
|
eqtrdi |
|
| 32 |
31
|
cbvmptv |
|
| 33 |
23 32
|
eqtrdi |
|
| 34 |
|
simp3rr |
|
| 35 |
24
|
oveq2d |
|
| 36 |
35
|
sumeq2sdv |
|
| 37 |
|
fveq2 |
|
| 38 |
37 28
|
oveq12d |
|
| 39 |
38
|
cbvsumv |
|
| 40 |
36 39
|
eqtrdi |
|
| 41 |
40
|
cbvmptv |
|
| 42 |
34 41
|
eqtrdi |
|
| 43 |
13 4
|
sylan |
|
| 44 |
14 15 16 17 18 19 20 21 22 33 42 43
|
plymullem |
|
| 45 |
44
|
3expia |
|
| 46 |
45
|
rexlimdvva |
|
| 47 |
12 46
|
biimtrrid |
|
| 48 |
47
|
rexlimdvva |
|
| 49 |
11 48
|
biimtrrid |
|
| 50 |
7 10 49
|
mp2and |
|