Metamath Proof Explorer


Theorem plymul

Description: The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014)

Ref Expression
Hypotheses plyadd.1
|- ( ph -> F e. ( Poly ` S ) )
plyadd.2
|- ( ph -> G e. ( Poly ` S ) )
plyadd.3
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S )
plymul.4
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
Assertion plymul
|- ( ph -> ( F oF x. G ) e. ( Poly ` S ) )

Proof

Step Hyp Ref Expression
1 plyadd.1
 |-  ( ph -> F e. ( Poly ` S ) )
2 plyadd.2
 |-  ( ph -> G e. ( Poly ` S ) )
3 plyadd.3
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S )
4 plymul.4
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
5 elply2
 |-  ( F e. ( Poly ` S ) <-> ( S C_ CC /\ E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) )
6 5 simprbi
 |-  ( F e. ( Poly ` S ) -> E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) )
7 1 6 syl
 |-  ( ph -> E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) )
8 elply2
 |-  ( G e. ( Poly ` S ) <-> ( S C_ CC /\ E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) )
9 8 simprbi
 |-  ( G e. ( Poly ` S ) -> E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) )
10 2 9 syl
 |-  ( ph -> E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) )
11 reeanv
 |-  ( E. m e. NN0 E. n e. NN0 ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) <-> ( E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) )
12 reeanv
 |-  ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) <-> ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) )
13 simp1l
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ph )
14 13 1 syl
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F e. ( Poly ` S ) )
15 13 2 syl
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> G e. ( Poly ` S ) )
16 13 3 sylan
 |-  ( ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S )
17 simp1rl
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> m e. NN0 )
18 simp1rr
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> n e. NN0 )
19 simp2l
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> a e. ( ( S u. { 0 } ) ^m NN0 ) )
20 simp2r
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> b e. ( ( S u. { 0 } ) ^m NN0 ) )
21 simp3ll
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } )
22 simp3rl
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } )
23 simp3lr
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) )
24 oveq1
 |-  ( z = w -> ( z ^ k ) = ( w ^ k ) )
25 24 oveq2d
 |-  ( z = w -> ( ( a ` k ) x. ( z ^ k ) ) = ( ( a ` k ) x. ( w ^ k ) ) )
26 25 sumeq2sdv
 |-  ( z = w -> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( w ^ k ) ) )
27 fveq2
 |-  ( k = j -> ( a ` k ) = ( a ` j ) )
28 oveq2
 |-  ( k = j -> ( w ^ k ) = ( w ^ j ) )
29 27 28 oveq12d
 |-  ( k = j -> ( ( a ` k ) x. ( w ^ k ) ) = ( ( a ` j ) x. ( w ^ j ) ) )
30 29 cbvsumv
 |-  sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( w ^ k ) ) = sum_ j e. ( 0 ... m ) ( ( a ` j ) x. ( w ^ j ) )
31 26 30 eqtrdi
 |-  ( z = w -> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) = sum_ j e. ( 0 ... m ) ( ( a ` j ) x. ( w ^ j ) ) )
32 31 cbvmptv
 |-  ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) = ( w e. CC |-> sum_ j e. ( 0 ... m ) ( ( a ` j ) x. ( w ^ j ) ) )
33 23 32 eqtrdi
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> F = ( w e. CC |-> sum_ j e. ( 0 ... m ) ( ( a ` j ) x. ( w ^ j ) ) ) )
34 simp3rr
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) )
35 24 oveq2d
 |-  ( z = w -> ( ( b ` k ) x. ( z ^ k ) ) = ( ( b ` k ) x. ( w ^ k ) ) )
36 35 sumeq2sdv
 |-  ( z = w -> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( w ^ k ) ) )
37 fveq2
 |-  ( k = j -> ( b ` k ) = ( b ` j ) )
38 37 28 oveq12d
 |-  ( k = j -> ( ( b ` k ) x. ( w ^ k ) ) = ( ( b ` j ) x. ( w ^ j ) ) )
39 38 cbvsumv
 |-  sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( w ^ k ) ) = sum_ j e. ( 0 ... n ) ( ( b ` j ) x. ( w ^ j ) )
40 36 39 eqtrdi
 |-  ( z = w -> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) = sum_ j e. ( 0 ... n ) ( ( b ` j ) x. ( w ^ j ) ) )
41 40 cbvmptv
 |-  ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) = ( w e. CC |-> sum_ j e. ( 0 ... n ) ( ( b ` j ) x. ( w ^ j ) ) )
42 34 41 eqtrdi
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> G = ( w e. CC |-> sum_ j e. ( 0 ... n ) ( ( b ` j ) x. ( w ^ j ) ) ) )
43 13 4 sylan
 |-  ( ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
44 14 15 16 17 18 19 20 21 22 33 42 43 plymullem
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) /\ ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) ) -> ( F oF x. G ) e. ( Poly ` S ) )
45 44 3expia
 |-  ( ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) /\ ( a e. ( ( S u. { 0 } ) ^m NN0 ) /\ b e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF x. G ) e. ( Poly ` S ) ) )
46 45 rexlimdvva
 |-  ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) -> ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF x. G ) e. ( Poly ` S ) ) )
47 12 46 syl5bir
 |-  ( ( ph /\ ( m e. NN0 /\ n e. NN0 ) ) -> ( ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF x. G ) e. ( Poly ` S ) ) )
48 47 rexlimdvva
 |-  ( ph -> ( E. m e. NN0 E. n e. NN0 ( E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF x. G ) e. ( Poly ` S ) ) )
49 11 48 syl5bir
 |-  ( ph -> ( ( E. m e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) ( ( a " ( ZZ>= ` ( m + 1 ) ) ) = { 0 } /\ F = ( z e. CC |-> sum_ k e. ( 0 ... m ) ( ( a ` k ) x. ( z ^ k ) ) ) ) /\ E. n e. NN0 E. b e. ( ( S u. { 0 } ) ^m NN0 ) ( ( b " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ G = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( b ` k ) x. ( z ^ k ) ) ) ) ) -> ( F oF x. G ) e. ( Poly ` S ) ) )
50 7 10 49 mp2and
 |-  ( ph -> ( F oF x. G ) e. ( Poly ` S ) )