Metamath Proof Explorer


Theorem cbvsumv

Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Hypothesis cbvsum.1 j=kB=C
Assertion cbvsumv jAB=kAC

Proof

Step Hyp Ref Expression
1 cbvsum.1 j=kB=C
2 nfcv _kA
3 nfcv _jA
4 nfcv _kB
5 nfcv _jC
6 1 2 3 4 5 cbvsum jAB=kAC