| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyadd.1 |
|
| 2 |
|
plyadd.2 |
|
| 3 |
|
plyadd.3 |
|
| 4 |
|
plyadd.m |
|
| 5 |
|
plyadd.n |
|
| 6 |
|
plyadd.a |
|
| 7 |
|
plyadd.b |
|
| 8 |
|
plyadd.a2 |
|
| 9 |
|
plyadd.b2 |
|
| 10 |
|
plyadd.f |
|
| 11 |
|
plyadd.g |
|
| 12 |
|
plymul.x |
|
| 13 |
|
plybss |
|
| 14 |
1 13
|
syl |
|
| 15 |
|
0cnd |
|
| 16 |
15
|
snssd |
|
| 17 |
14 16
|
unssd |
|
| 18 |
|
cnex |
|
| 19 |
|
ssexg |
|
| 20 |
17 18 19
|
sylancl |
|
| 21 |
|
nn0ex |
|
| 22 |
|
elmapg |
|
| 23 |
20 21 22
|
sylancl |
|
| 24 |
6 23
|
mpbid |
|
| 25 |
24 17
|
fssd |
|
| 26 |
|
elmapg |
|
| 27 |
20 21 26
|
sylancl |
|
| 28 |
7 27
|
mpbid |
|
| 29 |
28 17
|
fssd |
|
| 30 |
1 2 4 5 25 29 8 9 10 11
|
plymullem1 |
|
| 31 |
4 5
|
nn0addcld |
|
| 32 |
|
eqid |
|
| 33 |
14 32 3
|
un0addcl |
|
| 34 |
|
fzfid |
|
| 35 |
|
elfznn0 |
|
| 36 |
|
ffvelcdm |
|
| 37 |
24 35 36
|
syl2an |
|
| 38 |
|
fznn0sub |
|
| 39 |
|
ffvelcdm |
|
| 40 |
28 38 39
|
syl2an |
|
| 41 |
37 40
|
jca |
|
| 42 |
14 32 12
|
un0mulcl |
|
| 43 |
42
|
caovclg |
|
| 44 |
41 43
|
syldan |
|
| 45 |
|
ssun2 |
|
| 46 |
|
c0ex |
|
| 47 |
46
|
snss |
|
| 48 |
45 47
|
mpbir |
|
| 49 |
48
|
a1i |
|
| 50 |
17 33 34 44 49
|
fsumcllem |
|
| 51 |
50
|
adantr |
|
| 52 |
17 31 51
|
elplyd |
|
| 53 |
30 52
|
eqeltrd |
|
| 54 |
|
plyun0 |
|
| 55 |
53 54
|
eleqtrdi |
|