Metamath Proof Explorer


Theorem un0mulcl

Description: If S is closed under multiplication, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Hypotheses un0addcl.1 φ S
un0addcl.2 T = S 0
un0mulcl.3 φ M S N S M N S
Assertion un0mulcl φ M T N T M N T

Proof

Step Hyp Ref Expression
1 un0addcl.1 φ S
2 un0addcl.2 T = S 0
3 un0mulcl.3 φ M S N S M N S
4 2 eleq2i N T N S 0
5 elun N S 0 N S N 0
6 4 5 bitri N T N S N 0
7 2 eleq2i M T M S 0
8 elun M S 0 M S M 0
9 7 8 bitri M T M S M 0
10 ssun1 S S 0
11 10 2 sseqtrri S T
12 11 3 sseldi φ M S N S M N T
13 12 expr φ M S N S M N T
14 1 sselda φ N S N
15 14 mul02d φ N S 0 N = 0
16 ssun2 0 S 0
17 16 2 sseqtrri 0 T
18 c0ex 0 V
19 18 snss 0 T 0 T
20 17 19 mpbir 0 T
21 15 20 eqeltrdi φ N S 0 N T
22 elsni M 0 M = 0
23 22 oveq1d M 0 M N = 0 N
24 23 eleq1d M 0 M N T 0 N T
25 21 24 syl5ibrcom φ N S M 0 M N T
26 25 impancom φ M 0 N S M N T
27 13 26 jaodan φ M S M 0 N S M N T
28 9 27 sylan2b φ M T N S M N T
29 0cnd φ 0
30 29 snssd φ 0
31 1 30 unssd φ S 0
32 2 31 eqsstrid φ T
33 32 sselda φ M T M
34 33 mul01d φ M T M 0 = 0
35 34 20 eqeltrdi φ M T M 0 T
36 elsni N 0 N = 0
37 36 oveq2d N 0 M N = M 0
38 37 eleq1d N 0 M N T M 0 T
39 35 38 syl5ibrcom φ M T N 0 M N T
40 28 39 jaod φ M T N S N 0 M N T
41 6 40 syl5bi φ M T N T M N T
42 41 impr φ M T N T M N T