Metamath Proof Explorer


Theorem nn0addcl

Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002) (Proof shortened by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion nn0addcl M0N0M+N0

Proof

Step Hyp Ref Expression
1 nnsscn
2 id
3 df-n0 0=0
4 nnaddcl MNM+N
5 4 adantl MNM+N
6 2 3 5 un0addcl M0N0M+N0
7 1 6 mpan M0N0M+N0