| Step |
Hyp |
Ref |
Expression |
| 1 |
|
un0addcl.1 |
|
| 2 |
|
un0addcl.2 |
|
| 3 |
|
un0addcl.3 |
|
| 4 |
2
|
eleq2i |
|
| 5 |
|
elun |
|
| 6 |
4 5
|
bitri |
|
| 7 |
2
|
eleq2i |
|
| 8 |
|
elun |
|
| 9 |
7 8
|
bitri |
|
| 10 |
|
ssun1 |
|
| 11 |
10 2
|
sseqtrri |
|
| 12 |
11 3
|
sselid |
|
| 13 |
12
|
expr |
|
| 14 |
1
|
sselda |
|
| 15 |
14
|
addlidd |
|
| 16 |
11
|
a1i |
|
| 17 |
16
|
sselda |
|
| 18 |
15 17
|
eqeltrd |
|
| 19 |
|
elsni |
|
| 20 |
19
|
oveq1d |
|
| 21 |
20
|
eleq1d |
|
| 22 |
18 21
|
syl5ibrcom |
|
| 23 |
22
|
impancom |
|
| 24 |
13 23
|
jaodan |
|
| 25 |
9 24
|
sylan2b |
|
| 26 |
|
0cnd |
|
| 27 |
26
|
snssd |
|
| 28 |
1 27
|
unssd |
|
| 29 |
2 28
|
eqsstrid |
|
| 30 |
29
|
sselda |
|
| 31 |
30
|
addridd |
|
| 32 |
|
simpr |
|
| 33 |
31 32
|
eqeltrd |
|
| 34 |
|
elsni |
|
| 35 |
34
|
oveq2d |
|
| 36 |
35
|
eleq1d |
|
| 37 |
33 36
|
syl5ibrcom |
|
| 38 |
25 37
|
jaod |
|
| 39 |
6 38
|
biimtrid |
|
| 40 |
39
|
impr |
|