| Step |
Hyp |
Ref |
Expression |
| 1 |
|
un0addcl.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 2 |
|
un0addcl.2 |
⊢ 𝑇 = ( 𝑆 ∪ { 0 } ) |
| 3 |
|
un0addcl.3 |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑆 ) |
| 4 |
2
|
eleq2i |
⊢ ( 𝑁 ∈ 𝑇 ↔ 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ) |
| 5 |
|
elun |
⊢ ( 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) ) |
| 6 |
4 5
|
bitri |
⊢ ( 𝑁 ∈ 𝑇 ↔ ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) ) |
| 7 |
2
|
eleq2i |
⊢ ( 𝑀 ∈ 𝑇 ↔ 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ) |
| 8 |
|
elun |
⊢ ( 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) |
| 9 |
7 8
|
bitri |
⊢ ( 𝑀 ∈ 𝑇 ↔ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) |
| 10 |
|
ssun1 |
⊢ 𝑆 ⊆ ( 𝑆 ∪ { 0 } ) |
| 11 |
10 2
|
sseqtrri |
⊢ 𝑆 ⊆ 𝑇 |
| 12 |
11 3
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) |
| 13 |
12
|
expr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑆 ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 14 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → 𝑁 ∈ ℂ ) |
| 15 |
14
|
addlidd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 0 + 𝑁 ) = 𝑁 ) |
| 16 |
11
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑇 ) |
| 17 |
16
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → 𝑁 ∈ 𝑇 ) |
| 18 |
15 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 0 + 𝑁 ) ∈ 𝑇 ) |
| 19 |
|
elsni |
⊢ ( 𝑀 ∈ { 0 } → 𝑀 = 0 ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑀 ∈ { 0 } → ( 𝑀 + 𝑁 ) = ( 0 + 𝑁 ) ) |
| 21 |
20
|
eleq1d |
⊢ ( 𝑀 ∈ { 0 } → ( ( 𝑀 + 𝑁 ) ∈ 𝑇 ↔ ( 0 + 𝑁 ) ∈ 𝑇 ) ) |
| 22 |
18 21
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 𝑀 ∈ { 0 } → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 23 |
22
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ { 0 } ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 24 |
13 23
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 25 |
9 24
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 26 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 27 |
26
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
| 28 |
1 27
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
| 29 |
2 28
|
eqsstrid |
⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
| 30 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → 𝑀 ∈ ℂ ) |
| 31 |
30
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑀 + 0 ) = 𝑀 ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → 𝑀 ∈ 𝑇 ) |
| 33 |
31 32
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑀 + 0 ) ∈ 𝑇 ) |
| 34 |
|
elsni |
⊢ ( 𝑁 ∈ { 0 } → 𝑁 = 0 ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝑁 ∈ { 0 } → ( 𝑀 + 𝑁 ) = ( 𝑀 + 0 ) ) |
| 36 |
35
|
eleq1d |
⊢ ( 𝑁 ∈ { 0 } → ( ( 𝑀 + 𝑁 ) ∈ 𝑇 ↔ ( 𝑀 + 0 ) ∈ 𝑇 ) ) |
| 37 |
33 36
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ { 0 } → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 38 |
25 37
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 39 |
6 38
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ 𝑇 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) ) |
| 40 |
39
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) |