Metamath Proof Explorer


Theorem nn0addcld

Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses nn0red.1 φA0
nn0addcld.2 φB0
Assertion nn0addcld φA+B0

Proof

Step Hyp Ref Expression
1 nn0red.1 φA0
2 nn0addcld.2 φB0
3 nn0addcl A0B0A+B0
4 1 2 3 syl2anc φA+B0