| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyaddlem.1 |
|
| 2 |
|
plyaddlem.2 |
|
| 3 |
|
plyaddlem.m |
|
| 4 |
|
plyaddlem.n |
|
| 5 |
|
plyaddlem.a |
|
| 6 |
|
plyaddlem.b |
|
| 7 |
|
plyaddlem.a2 |
|
| 8 |
|
plyaddlem.b2 |
|
| 9 |
|
plyaddlem.f |
|
| 10 |
|
plyaddlem.g |
|
| 11 |
|
cnex |
|
| 12 |
11
|
a1i |
|
| 13 |
|
sumex |
|
| 14 |
13
|
a1i |
|
| 15 |
|
sumex |
|
| 16 |
15
|
a1i |
|
| 17 |
12 14 16 9 10
|
offval2 |
|
| 18 |
|
fveq2 |
|
| 19 |
|
oveq2 |
|
| 20 |
18 19
|
oveq12d |
|
| 21 |
20
|
oveq2d |
|
| 22 |
|
fveq2 |
|
| 23 |
|
oveq2 |
|
| 24 |
22 23
|
oveq12d |
|
| 25 |
24
|
oveq2d |
|
| 26 |
|
elfznn0 |
|
| 27 |
5
|
adantr |
|
| 28 |
27
|
ffvelcdmda |
|
| 29 |
|
expcl |
|
| 30 |
29
|
adantll |
|
| 31 |
28 30
|
mulcld |
|
| 32 |
26 31
|
sylan2 |
|
| 33 |
|
elfznn0 |
|
| 34 |
6
|
adantr |
|
| 35 |
34
|
ffvelcdmda |
|
| 36 |
|
expcl |
|
| 37 |
36
|
adantll |
|
| 38 |
35 37
|
mulcld |
|
| 39 |
33 38
|
sylan2 |
|
| 40 |
32 39
|
anim12dan |
|
| 41 |
|
mulcl |
|
| 42 |
40 41
|
syl |
|
| 43 |
21 25 42
|
fsum0diag2 |
|
| 44 |
3
|
nn0cnd |
|
| 45 |
44
|
ad2antrr |
|
| 46 |
4
|
nn0cnd |
|
| 47 |
46
|
ad2antrr |
|
| 48 |
|
elfznn0 |
|
| 49 |
48
|
adantl |
|
| 50 |
49
|
nn0cnd |
|
| 51 |
45 47 50
|
addsubd |
|
| 52 |
|
fznn0sub |
|
| 53 |
52
|
adantl |
|
| 54 |
|
nn0uz |
|
| 55 |
53 54
|
eleqtrdi |
|
| 56 |
4
|
nn0zd |
|
| 57 |
56
|
ad2antrr |
|
| 58 |
|
eluzadd |
|
| 59 |
55 57 58
|
syl2anc |
|
| 60 |
51 59
|
eqeltrd |
|
| 61 |
47
|
addlidd |
|
| 62 |
61
|
fveq2d |
|
| 63 |
60 62
|
eleqtrd |
|
| 64 |
|
fzss2 |
|
| 65 |
63 64
|
syl |
|
| 66 |
48 31
|
sylan2 |
|
| 67 |
66
|
adantr |
|
| 68 |
|
elfznn0 |
|
| 69 |
68 38
|
sylan2 |
|
| 70 |
69
|
adantlr |
|
| 71 |
67 70
|
mulcld |
|
| 72 |
|
eldifn |
|
| 73 |
72
|
adantl |
|
| 74 |
|
eldifi |
|
| 75 |
74 33
|
syl |
|
| 76 |
75
|
adantl |
|
| 77 |
|
peano2nn0 |
|
| 78 |
4 77
|
syl |
|
| 79 |
78 54
|
eleqtrdi |
|
| 80 |
|
uzsplit |
|
| 81 |
79 80
|
syl |
|
| 82 |
54 81
|
eqtrid |
|
| 83 |
|
ax-1cn |
|
| 84 |
|
pncan |
|
| 85 |
46 83 84
|
sylancl |
|
| 86 |
85
|
oveq2d |
|
| 87 |
86
|
uneq1d |
|
| 88 |
82 87
|
eqtrd |
|
| 89 |
88
|
ad3antrrr |
|
| 90 |
76 89
|
eleqtrd |
|
| 91 |
|
elun |
|
| 92 |
90 91
|
sylib |
|
| 93 |
92
|
ord |
|
| 94 |
73 93
|
mpd |
|
| 95 |
6
|
ffund |
|
| 96 |
|
ssun2 |
|
| 97 |
96 82
|
sseqtrrid |
|
| 98 |
6
|
fdmd |
|
| 99 |
97 98
|
sseqtrrd |
|
| 100 |
|
funfvima2 |
|
| 101 |
95 99 100
|
syl2anc |
|
| 102 |
101
|
ad3antrrr |
|
| 103 |
94 102
|
mpd |
|
| 104 |
8
|
ad3antrrr |
|
| 105 |
103 104
|
eleqtrd |
|
| 106 |
|
elsni |
|
| 107 |
105 106
|
syl |
|
| 108 |
107
|
oveq1d |
|
| 109 |
|
simplr |
|
| 110 |
109 75 36
|
syl2an |
|
| 111 |
110
|
mul02d |
|
| 112 |
108 111
|
eqtrd |
|
| 113 |
112
|
oveq2d |
|
| 114 |
66
|
adantr |
|
| 115 |
114
|
mul01d |
|
| 116 |
113 115
|
eqtrd |
|
| 117 |
|
fzfid |
|
| 118 |
65 71 116 117
|
fsumss |
|
| 119 |
118
|
sumeq2dv |
|
| 120 |
|
fzfid |
|
| 121 |
|
fzfid |
|
| 122 |
120 121 66 69
|
fsum2mul |
|
| 123 |
44 46
|
addcomd |
|
| 124 |
4 54
|
eleqtrdi |
|
| 125 |
3
|
nn0zd |
|
| 126 |
|
eluzadd |
|
| 127 |
124 125 126
|
syl2anc |
|
| 128 |
44
|
addlidd |
|
| 129 |
128
|
fveq2d |
|
| 130 |
127 129
|
eleqtrd |
|
| 131 |
123 130
|
eqeltrd |
|
| 132 |
|
fzss2 |
|
| 133 |
131 132
|
syl |
|
| 134 |
133
|
adantr |
|
| 135 |
66
|
adantr |
|
| 136 |
39
|
adantlr |
|
| 137 |
135 136
|
mulcld |
|
| 138 |
117 137
|
fsumcl |
|
| 139 |
|
eldifn |
|
| 140 |
139
|
adantl |
|
| 141 |
|
eldifi |
|
| 142 |
141 26
|
syl |
|
| 143 |
142
|
adantl |
|
| 144 |
|
peano2nn0 |
|
| 145 |
3 144
|
syl |
|
| 146 |
145 54
|
eleqtrdi |
|
| 147 |
|
uzsplit |
|
| 148 |
146 147
|
syl |
|
| 149 |
54 148
|
eqtrid |
|
| 150 |
|
pncan |
|
| 151 |
44 83 150
|
sylancl |
|
| 152 |
151
|
oveq2d |
|
| 153 |
152
|
uneq1d |
|
| 154 |
149 153
|
eqtrd |
|
| 155 |
154
|
ad2antrr |
|
| 156 |
143 155
|
eleqtrd |
|
| 157 |
|
elun |
|
| 158 |
156 157
|
sylib |
|
| 159 |
158
|
ord |
|
| 160 |
140 159
|
mpd |
|
| 161 |
5
|
ffund |
|
| 162 |
|
ssun2 |
|
| 163 |
162 149
|
sseqtrrid |
|
| 164 |
5
|
fdmd |
|
| 165 |
163 164
|
sseqtrrd |
|
| 166 |
|
funfvima2 |
|
| 167 |
161 165 166
|
syl2anc |
|
| 168 |
167
|
ad2antrr |
|
| 169 |
160 168
|
mpd |
|
| 170 |
7
|
ad2antrr |
|
| 171 |
169 170
|
eleqtrd |
|
| 172 |
|
elsni |
|
| 173 |
171 172
|
syl |
|
| 174 |
173
|
oveq1d |
|
| 175 |
142 30
|
sylan2 |
|
| 176 |
175
|
mul02d |
|
| 177 |
174 176
|
eqtrd |
|
| 178 |
177
|
adantr |
|
| 179 |
178
|
oveq1d |
|
| 180 |
39
|
adantlr |
|
| 181 |
180
|
mul02d |
|
| 182 |
179 181
|
eqtrd |
|
| 183 |
182
|
sumeq2dv |
|
| 184 |
|
fzfid |
|
| 185 |
184
|
olcd |
|
| 186 |
|
sumz |
|
| 187 |
185 186
|
syl |
|
| 188 |
183 187
|
eqtrd |
|
| 189 |
|
fzfid |
|
| 190 |
134 138 188 189
|
fsumss |
|
| 191 |
119 122 190
|
3eqtr3d |
|
| 192 |
|
fzfid |
|
| 193 |
|
elfznn0 |
|
| 194 |
193 37
|
sylan2 |
|
| 195 |
|
simpll |
|
| 196 |
|
elfznn0 |
|
| 197 |
5
|
ffvelcdmda |
|
| 198 |
195 196 197
|
syl2an |
|
| 199 |
|
fznn0sub |
|
| 200 |
6
|
ffvelcdmda |
|
| 201 |
195 199 200
|
syl2an |
|
| 202 |
198 201
|
mulcld |
|
| 203 |
192 194 202
|
fsummulc1 |
|
| 204 |
|
simplr |
|
| 205 |
204 196 29
|
syl2an |
|
| 206 |
|
expcl |
|
| 207 |
204 199 206
|
syl2an |
|
| 208 |
198 205 201 207
|
mul4d |
|
| 209 |
204
|
adantr |
|
| 210 |
199
|
adantl |
|
| 211 |
196
|
adantl |
|
| 212 |
209 210 211
|
expaddd |
|
| 213 |
211
|
nn0cnd |
|
| 214 |
193
|
ad2antlr |
|
| 215 |
214
|
nn0cnd |
|
| 216 |
213 215
|
pncan3d |
|
| 217 |
216
|
oveq2d |
|
| 218 |
212 217
|
eqtr3d |
|
| 219 |
218
|
oveq2d |
|
| 220 |
208 219
|
eqtrd |
|
| 221 |
220
|
sumeq2dv |
|
| 222 |
203 221
|
eqtr4d |
|
| 223 |
222
|
sumeq2dv |
|
| 224 |
43 191 223
|
3eqtr4rd |
|
| 225 |
|
fveq2 |
|
| 226 |
|
oveq2 |
|
| 227 |
225 226
|
oveq12d |
|
| 228 |
227
|
cbvsumv |
|
| 229 |
228
|
oveq2i |
|
| 230 |
224 229
|
eqtrdi |
|
| 231 |
230
|
mpteq2dva |
|
| 232 |
17 231
|
eqtr4d |
|