| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyaddlem.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 2 |
|
plyaddlem.2 |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 3 |
|
plyaddlem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 4 |
|
plyaddlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
plyaddlem.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 6 |
|
plyaddlem.b |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ ℂ ) |
| 7 |
|
plyaddlem.a2 |
⊢ ( 𝜑 → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
| 8 |
|
plyaddlem.b2 |
⊢ ( 𝜑 → ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
| 9 |
|
plyaddlem.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 10 |
|
plyaddlem.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 11 |
|
cnex |
⊢ ℂ ∈ V |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
| 13 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ V |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ V ) |
| 15 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ V |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ V ) |
| 17 |
12 14 16 9 10
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) = ( 𝑧 ∈ ℂ ↦ ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐵 ‘ 𝑚 ) = ( 𝐵 ‘ 𝑛 ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 ↑ 𝑚 ) = ( 𝑧 ↑ 𝑛 ) ) |
| 20 |
18 19
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) = ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 − 𝑘 ) → ( 𝐵 ‘ 𝑚 ) = ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 − 𝑘 ) → ( 𝑧 ↑ 𝑚 ) = ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) |
| 24 |
22 23
|
oveq12d |
⊢ ( 𝑚 = ( 𝑛 − 𝑘 ) → ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) = ( ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 − 𝑘 ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) ) |
| 26 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 28 |
27
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 29 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 30 |
29
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 31 |
28 30
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 32 |
26 31
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 33 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) → 𝑛 ∈ ℕ0 ) |
| 34 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐵 : ℕ0 ⟶ ℂ ) |
| 35 |
34
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐵 ‘ 𝑛 ) ∈ ℂ ) |
| 36 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑛 ) ∈ ℂ ) |
| 37 |
36
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑛 ) ∈ ℂ ) |
| 38 |
35 37
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ∈ ℂ ) |
| 39 |
33 38
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) → ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ∈ ℂ ) |
| 40 |
32 39
|
anim12dan |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ ( 𝑘 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ∧ ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ∈ ℂ ) ) |
| 41 |
|
mulcl |
⊢ ( ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ∧ ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ∈ ℂ ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 42 |
40 41
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ ( 𝑘 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 43 |
21 25 42
|
fsum0diag2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) ) |
| 44 |
3
|
nn0cnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ℂ ) |
| 46 |
4
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑁 ∈ ℂ ) |
| 48 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ℕ0 ) |
| 49 |
48
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 50 |
49
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ℂ ) |
| 51 |
45 47 50
|
addsubd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑀 + 𝑁 ) − 𝑘 ) = ( ( 𝑀 − 𝑘 ) + 𝑁 ) ) |
| 52 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → ( 𝑀 − 𝑘 ) ∈ ℕ0 ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 − 𝑘 ) ∈ ℕ0 ) |
| 54 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 55 |
53 54
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 − 𝑘 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 56 |
4
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑁 ∈ ℤ ) |
| 58 |
|
eluzadd |
⊢ ( ( ( 𝑀 − 𝑘 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 − 𝑘 ) + 𝑁 ) ∈ ( ℤ≥ ‘ ( 0 + 𝑁 ) ) ) |
| 59 |
55 57 58
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑀 − 𝑘 ) + 𝑁 ) ∈ ( ℤ≥ ‘ ( 0 + 𝑁 ) ) ) |
| 60 |
51 59
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑀 + 𝑁 ) − 𝑘 ) ∈ ( ℤ≥ ‘ ( 0 + 𝑁 ) ) ) |
| 61 |
47
|
addlidd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 0 + 𝑁 ) = 𝑁 ) |
| 62 |
61
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ℤ≥ ‘ ( 0 + 𝑁 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 63 |
60 62
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑀 + 𝑁 ) − 𝑘 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 64 |
|
fzss2 |
⊢ ( ( ( 𝑀 + 𝑁 ) − 𝑘 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) |
| 65 |
63 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) |
| 66 |
48 31
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 68 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... 𝑁 ) → 𝑛 ∈ ℕ0 ) |
| 69 |
68 38
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ∈ ℂ ) |
| 70 |
69
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ∈ ℂ ) |
| 71 |
67 70
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 72 |
|
eldifn |
⊢ ( 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) → ¬ 𝑛 ∈ ( 0 ... 𝑁 ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ¬ 𝑛 ∈ ( 0 ... 𝑁 ) ) |
| 74 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) → 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) |
| 75 |
74 33
|
syl |
⊢ ( 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
| 76 |
75
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 77 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 78 |
4 77
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 79 |
78 54
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 80 |
|
uzsplit |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 81 |
79 80
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 82 |
54 81
|
eqtrid |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 83 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 84 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 85 |
46 83 84
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
| 87 |
86
|
uneq1d |
⊢ ( 𝜑 → ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 88 |
82 87
|
eqtrd |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 89 |
88
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ℕ0 = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 90 |
76 89
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑛 ∈ ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 91 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ↔ ( 𝑛 ∈ ( 0 ... 𝑁 ) ∨ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 92 |
90 91
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑛 ∈ ( 0 ... 𝑁 ) ∨ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 93 |
92
|
ord |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ¬ 𝑛 ∈ ( 0 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 94 |
73 93
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 95 |
6
|
ffund |
⊢ ( 𝜑 → Fun 𝐵 ) |
| 96 |
|
ssun2 |
⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 97 |
96 82
|
sseqtrrid |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ℕ0 ) |
| 98 |
6
|
fdmd |
⊢ ( 𝜑 → dom 𝐵 = ℕ0 ) |
| 99 |
97 98
|
sseqtrrd |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ dom 𝐵 ) |
| 100 |
|
funfvima2 |
⊢ ( ( Fun 𝐵 ∧ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ dom 𝐵 ) → ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐵 ‘ 𝑛 ) ∈ ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 101 |
95 99 100
|
syl2anc |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐵 ‘ 𝑛 ) ∈ ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 102 |
101
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐵 ‘ 𝑛 ) ∈ ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 103 |
94 102
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑛 ) ∈ ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 104 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
| 105 |
103 104
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑛 ) ∈ { 0 } ) |
| 106 |
|
elsni |
⊢ ( ( 𝐵 ‘ 𝑛 ) ∈ { 0 } → ( 𝐵 ‘ 𝑛 ) = 0 ) |
| 107 |
105 106
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑛 ) = 0 ) |
| 108 |
107
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) = ( 0 · ( 𝑧 ↑ 𝑛 ) ) ) |
| 109 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑧 ∈ ℂ ) |
| 110 |
109 75 36
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑧 ↑ 𝑛 ) ∈ ℂ ) |
| 111 |
110
|
mul02d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 0 · ( 𝑧 ↑ 𝑛 ) ) = 0 ) |
| 112 |
108 111
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) = 0 ) |
| 113 |
112
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · 0 ) ) |
| 114 |
66
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 115 |
114
|
mul01d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · 0 ) = 0 ) |
| 116 |
113 115
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = 0 ) |
| 117 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∈ Fin ) |
| 118 |
65 71 116 117
|
fsumss |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
| 119 |
118
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
| 120 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑀 ) ∈ Fin ) |
| 121 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑁 ) ∈ Fin ) |
| 122 |
120 121 66 69
|
fsum2mul |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
| 123 |
44 46
|
addcomd |
⊢ ( 𝜑 → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
| 124 |
4 54
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 125 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 126 |
|
eluzadd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑀 ∈ ℤ ) → ( 𝑁 + 𝑀 ) ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ) |
| 127 |
124 125 126
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 + 𝑀 ) ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ) |
| 128 |
44
|
addlidd |
⊢ ( 𝜑 → ( 0 + 𝑀 ) = 𝑀 ) |
| 129 |
128
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 0 + 𝑀 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
| 130 |
127 129
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑁 + 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 131 |
123 130
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 132 |
|
fzss2 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 0 ... 𝑀 ) ⊆ ( 0 ... ( 𝑀 + 𝑁 ) ) ) |
| 133 |
131 132
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ⊆ ( 0 ... ( 𝑀 + 𝑁 ) ) ) |
| 134 |
133
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑀 ) ⊆ ( 0 ... ( 𝑀 + 𝑁 ) ) ) |
| 135 |
66
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 136 |
39
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) → ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ∈ ℂ ) |
| 137 |
135 136
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 138 |
117 137
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 139 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑀 ) ) |
| 140 |
139
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑀 ) ) |
| 141 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) |
| 142 |
141 26
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 143 |
142
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 144 |
|
peano2nn0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
| 145 |
3 144
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
| 146 |
145 54
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 147 |
|
uzsplit |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 148 |
146 147
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 149 |
54 148
|
eqtrid |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 150 |
|
pncan |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 151 |
44 83 150
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 152 |
151
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) = ( 0 ... 𝑀 ) ) |
| 153 |
152
|
uneq1d |
⊢ ( 𝜑 → ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 154 |
149 153
|
eqtrd |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 155 |
154
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ℕ0 = ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 156 |
143 155
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → 𝑘 ∈ ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 157 |
|
elun |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ↔ ( 𝑘 ∈ ( 0 ... 𝑀 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 158 |
156 157
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑀 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 159 |
158
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( ¬ 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 160 |
140 159
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 161 |
5
|
ffund |
⊢ ( 𝜑 → Fun 𝐴 ) |
| 162 |
|
ssun2 |
⊢ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 163 |
162 149
|
sseqtrrid |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ℕ0 ) |
| 164 |
5
|
fdmd |
⊢ ( 𝜑 → dom 𝐴 = ℕ0 ) |
| 165 |
163 164
|
sseqtrrd |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ dom 𝐴 ) |
| 166 |
|
funfvima2 |
⊢ ( ( Fun 𝐴 ∧ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ dom 𝐴 ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 167 |
161 165 166
|
syl2anc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 168 |
167
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 169 |
160 168
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 170 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
| 171 |
169 170
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ { 0 } ) |
| 172 |
|
elsni |
⊢ ( ( 𝐴 ‘ 𝑘 ) ∈ { 0 } → ( 𝐴 ‘ 𝑘 ) = 0 ) |
| 173 |
171 172
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝐴 ‘ 𝑘 ) = 0 ) |
| 174 |
173
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( 0 · ( 𝑧 ↑ 𝑘 ) ) ) |
| 175 |
142 30
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 176 |
175
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 0 · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 177 |
174 176
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 178 |
177
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 179 |
178
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( 0 · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
| 180 |
39
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) → ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ∈ ℂ ) |
| 181 |
180
|
mul02d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) → ( 0 · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = 0 ) |
| 182 |
179 181
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = 0 ) |
| 183 |
182
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) 0 ) |
| 184 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∈ Fin ) |
| 185 |
184
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∈ Fin ) ) |
| 186 |
|
sumz |
⊢ ( ( ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ∈ Fin ) → Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) 0 = 0 ) |
| 187 |
185 186
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) 0 = 0 ) |
| 188 |
183 187
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑀 + 𝑁 ) ) ∖ ( 0 ... 𝑀 ) ) ) → Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = 0 ) |
| 189 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ) |
| 190 |
134 138 188 189
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
| 191 |
119 122 190
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) Σ 𝑛 ∈ ( 0 ... ( ( 𝑀 + 𝑁 ) − 𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
| 192 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( 0 ... 𝑛 ) ∈ Fin ) |
| 193 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
| 194 |
193 37
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝑧 ↑ 𝑛 ) ∈ ℂ ) |
| 195 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → 𝜑 ) |
| 196 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → 𝑘 ∈ ℕ0 ) |
| 197 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 198 |
195 196 197
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 199 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( 𝑛 − 𝑘 ) ∈ ℕ0 ) |
| 200 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑛 − 𝑘 ) ∈ ℕ0 ) → ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ∈ ℂ ) |
| 201 |
195 199 200
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ∈ ℂ ) |
| 202 |
198 201
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ∈ ℂ ) |
| 203 |
192 194 202
|
fsummulc1 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) ) |
| 204 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → 𝑧 ∈ ℂ ) |
| 205 |
204 196 29
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 206 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝑛 − 𝑘 ) ∈ ℕ0 ) → ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ∈ ℂ ) |
| 207 |
204 199 206
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ∈ ℂ ) |
| 208 |
198 205 201 207
|
mul4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( ( 𝑧 ↑ 𝑘 ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) ) |
| 209 |
204
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑧 ∈ ℂ ) |
| 210 |
199
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑛 − 𝑘 ) ∈ ℕ0 ) |
| 211 |
196
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑘 ∈ ℕ0 ) |
| 212 |
209 210 211
|
expaddd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ↑ ( 𝑘 + ( 𝑛 − 𝑘 ) ) ) = ( ( 𝑧 ↑ 𝑘 ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) |
| 213 |
211
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑘 ∈ ℂ ) |
| 214 |
193
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑛 ∈ ℕ0 ) |
| 215 |
214
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑛 ∈ ℂ ) |
| 216 |
213 215
|
pncan3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑘 + ( 𝑛 − 𝑘 ) ) = 𝑛 ) |
| 217 |
216
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ↑ ( 𝑘 + ( 𝑛 − 𝑘 ) ) ) = ( 𝑧 ↑ 𝑛 ) ) |
| 218 |
212 217
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑧 ↑ 𝑘 ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) = ( 𝑧 ↑ 𝑛 ) ) |
| 219 |
218
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( ( 𝑧 ↑ 𝑘 ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) ) |
| 220 |
208 219
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) ) |
| 221 |
220
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) ) |
| 222 |
203 221
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) ) |
| 223 |
222
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · ( ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) · ( 𝑧 ↑ ( 𝑛 − 𝑘 ) ) ) ) ) |
| 224 |
43 191 223
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
| 225 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 226 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑧 ↑ 𝑛 ) = ( 𝑧 ↑ 𝑘 ) ) |
| 227 |
225 226
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) = ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 228 |
227
|
cbvsumv |
⊢ Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) |
| 229 |
228
|
oveq2i |
⊢ ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · Σ 𝑛 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 230 |
224 229
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 231 |
230
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 232 |
17 231
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |