| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
simpr |
|
| 3 |
|
simpl |
|
| 4 |
|
c0ex |
|
| 5 |
4
|
fvconst2 |
|
| 6 |
|
ifid |
|
| 7 |
5 6
|
eqtr4di |
|
| 8 |
7
|
adantl |
|
| 9 |
|
0cnd |
|
| 10 |
1 2 3 8 9
|
zsum |
|
| 11 |
|
fclim |
|
| 12 |
|
ffun |
|
| 13 |
11 12
|
ax-mp |
|
| 14 |
|
serclim0 |
|
| 15 |
14
|
adantl |
|
| 16 |
|
funbrfv |
|
| 17 |
13 15 16
|
mpsyl |
|
| 18 |
10 17
|
eqtrd |
|
| 19 |
|
uzf |
|
| 20 |
19
|
fdmi |
|
| 21 |
20
|
eleq2i |
|
| 22 |
|
ndmfv |
|
| 23 |
21 22
|
sylnbir |
|
| 24 |
23
|
sseq2d |
|
| 25 |
24
|
biimpac |
|
| 26 |
|
ss0 |
|
| 27 |
|
sumeq1 |
|
| 28 |
|
sum0 |
|
| 29 |
27 28
|
eqtrdi |
|
| 30 |
25 26 29
|
3syl |
|
| 31 |
18 30
|
pm2.61dan |
|
| 32 |
|
fz1f1o |
|
| 33 |
|
eqidd |
|
| 34 |
|
simpl |
|
| 35 |
|
simpr |
|
| 36 |
|
0cnd |
|
| 37 |
|
elfznn |
|
| 38 |
4
|
fvconst2 |
|
| 39 |
37 38
|
syl |
|
| 40 |
39
|
adantl |
|
| 41 |
33 34 35 36 40
|
fsum |
|
| 42 |
|
nnuz |
|
| 43 |
42
|
ser0 |
|
| 44 |
43
|
adantr |
|
| 45 |
41 44
|
eqtrd |
|
| 46 |
45
|
ex |
|
| 47 |
46
|
exlimdv |
|
| 48 |
47
|
imp |
|
| 49 |
29 48
|
jaoi |
|
| 50 |
32 49
|
syl |
|
| 51 |
31 50
|
jaoi |
|