Metamath Proof Explorer


Theorem ser0

Description: The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013) (Revised by Mario Carneiro, 15-Dec-2014)

Ref Expression
Hypothesis ser0.1 Z=M
Assertion ser0 NZseqM+Z×0N=0

Proof

Step Hyp Ref Expression
1 ser0.1 Z=M
2 00id 0+0=0
3 2 a1i NZ0+0=0
4 1 eleq2i NZNM
5 4 biimpi NZNM
6 0cn 0
7 elfzuz kMNkM
8 7 1 eleqtrrdi kMNkZ
9 8 adantl NZkMNkZ
10 fvconst2g 0kZZ×0k=0
11 6 9 10 sylancr NZkMNZ×0k=0
12 3 5 11 seqid3 NZseqM+Z×0N=0