| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ser0.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 3 |
2
|
a1i |
⊢ ( 𝑁 ∈ 𝑍 → ( 0 + 0 ) = 0 ) |
| 4 |
1
|
eleq2i |
⊢ ( 𝑁 ∈ 𝑍 ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
4
|
biimpi |
⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 |
|
0cn |
⊢ 0 ∈ ℂ |
| 7 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 |
7 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ 𝑍 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 10 |
|
fvconst2g |
⊢ ( ( 0 ∈ ℂ ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 11 |
6 9 10
|
sylancr |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 12 |
3 5 11
|
seqid3 |
⊢ ( 𝑁 ∈ 𝑍 → ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑁 ) = 0 ) |