Metamath Proof Explorer


Theorem ser0

Description: The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013) (Revised by Mario Carneiro, 15-Dec-2014)

Ref Expression
Hypothesis ser0.1 𝑍 = ( ℤ𝑀 )
Assertion ser0 ( 𝑁𝑍 → ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑁 ) = 0 )

Proof

Step Hyp Ref Expression
1 ser0.1 𝑍 = ( ℤ𝑀 )
2 00id ( 0 + 0 ) = 0
3 2 a1i ( 𝑁𝑍 → ( 0 + 0 ) = 0 )
4 1 eleq2i ( 𝑁𝑍𝑁 ∈ ( ℤ𝑀 ) )
5 4 biimpi ( 𝑁𝑍𝑁 ∈ ( ℤ𝑀 ) )
6 0cn 0 ∈ ℂ
7 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( ℤ𝑀 ) )
8 7 1 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘𝑍 )
9 8 adantl ( ( 𝑁𝑍𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑘𝑍 )
10 fvconst2g ( ( 0 ∈ ℂ ∧ 𝑘𝑍 ) → ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) = 0 )
11 6 9 10 sylancr ( ( 𝑁𝑍𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) = 0 )
12 3 5 11 seqid3 ( 𝑁𝑍 → ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑁 ) = 0 )