Metamath Proof Explorer


Theorem sum0

Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 20-Apr-2014)

Ref Expression
Assertion sum0 kA=0

Proof

Step Hyp Ref Expression
1 nnuz =1
2 1z 1
3 2 a1i 1
4 0ss
5 4 a1i
6 simpr kk
7 6 1 eleqtrdi kk1
8 c0ex 0V
9 8 fvconst2 k11×0k=0
10 7 9 syl k1×0k=0
11 noel ¬k
12 11 iffalsei ifkA0=0
13 10 12 eqtr4di k1×0k=ifkA0
14 11 pm2.21i kA
15 14 adantl kA
16 1 3 5 13 15 zsum kA=seq1+1×0
17 16 mptru kA=seq1+1×0
18 fclim :dom
19 ffun :domFun
20 18 19 ax-mp Fun
21 serclim0 1seq1+1×00
22 2 21 ax-mp seq1+1×00
23 funbrfv Funseq1+1×00seq1+1×0=0
24 20 22 23 mp2 seq1+1×0=0
25 17 24 eqtri kA=0