Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 20-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | sum0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz | |
|
2 | 1z | |
|
3 | 2 | a1i | |
4 | 0ss | |
|
5 | 4 | a1i | |
6 | simpr | |
|
7 | 6 1 | eleqtrdi | |
8 | c0ex | |
|
9 | 8 | fvconst2 | |
10 | 7 9 | syl | |
11 | noel | |
|
12 | 11 | iffalsei | |
13 | 10 12 | eqtr4di | |
14 | 11 | pm2.21i | |
15 | 14 | adantl | |
16 | 1 3 5 13 15 | zsum | |
17 | 16 | mptru | |
18 | fclim | |
|
19 | ffun | |
|
20 | 18 19 | ax-mp | |
21 | serclim0 | |
|
22 | 2 21 | ax-mp | |
23 | funbrfv | |
|
24 | 20 22 23 | mp2 | |
25 | 17 24 | eqtri | |