Metamath Proof Explorer


Theorem fsum2mul

Description: Separate the nested sum of the product C ( j ) x. D ( k ) . (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsum2mul.1 φAFin
fsum2mul.2 φBFin
fsum2mul.3 φjAC
fsum2mul.4 φkBD
Assertion fsum2mul φjAkBCD=jACkBD

Proof

Step Hyp Ref Expression
1 fsum2mul.1 φAFin
2 fsum2mul.2 φBFin
3 fsum2mul.3 φjAC
4 fsum2mul.4 φkBD
5 2 4 fsumcl φkBD
6 1 5 3 fsummulc1 φjACkBD=jACkBD
7 2 adantr φjABFin
8 4 adantlr φjAkBD
9 7 3 8 fsummulc2 φjACkBD=kBCD
10 9 sumeq2dv φjACkBD=jAkBCD
11 6 10 eqtr2d φjAkBCD=jACkBD