Metamath Proof Explorer


Theorem fsumconst

Description: The sum of constant terms ( k is not free in B ). (Contributed by NM, 24-Dec-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Assertion fsumconst AFinBkAB=AB

Proof

Step Hyp Ref Expression
1 mul02 B0B=0
2 1 adantl AFinB0B=0
3 2 eqcomd AFinB0=0B
4 sumeq1 A=kAB=kB
5 sum0 kB=0
6 4 5 eqtrdi A=kAB=0
7 fveq2 A=A=
8 hash0 =0
9 7 8 eqtrdi A=A=0
10 9 oveq1d A=AB=0B
11 6 10 eqeq12d A=kAB=AB0=0B
12 3 11 syl5ibrcom AFinBA=kAB=AB
13 eqidd k=fnB=B
14 simprl AFinBAf:1A1-1 ontoAA
15 simprr AFinBAf:1A1-1 ontoAf:1A1-1 ontoA
16 simpllr AFinBAf:1A1-1 ontoAkAB
17 simplr AFinBAf:1A1-1 ontoAB
18 elfznn n1An
19 fvconst2g Bn×Bn=B
20 17 18 19 syl2an AFinBAf:1A1-1 ontoAn1A×Bn=B
21 13 14 15 16 20 fsum AFinBAf:1A1-1 ontoAkAB=seq1+×BA
22 ser1const BAseq1+×BA=AB
23 22 ad2ant2lr AFinBAf:1A1-1 ontoAseq1+×BA=AB
24 21 23 eqtrd AFinBAf:1A1-1 ontoAkAB=AB
25 24 expr AFinBAf:1A1-1 ontoAkAB=AB
26 25 exlimdv AFinBAff:1A1-1 ontoAkAB=AB
27 26 expimpd AFinBAff:1A1-1 ontoAkAB=AB
28 fz1f1o AFinA=Aff:1A1-1 ontoA
29 28 adantr AFinBA=Aff:1A1-1 ontoA
30 12 27 29 mpjaod AFinBkAB=AB