| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsummulc2.1 |
|
| 2 |
|
fsummulc2.2 |
|
| 3 |
|
fsummulc2.3 |
|
| 4 |
2
|
mul01d |
|
| 5 |
|
sumeq1 |
|
| 6 |
|
sum0 |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
7
|
oveq2d |
|
| 9 |
|
sumeq1 |
|
| 10 |
|
sum0 |
|
| 11 |
9 10
|
eqtrdi |
|
| 12 |
8 11
|
eqeq12d |
|
| 13 |
4 12
|
syl5ibrcom |
|
| 14 |
|
addcl |
|
| 15 |
14
|
adantl |
|
| 16 |
2
|
adantr |
|
| 17 |
|
adddi |
|
| 18 |
17
|
3expb |
|
| 19 |
16 18
|
sylan |
|
| 20 |
|
simprl |
|
| 21 |
|
nnuz |
|
| 22 |
20 21
|
eleqtrdi |
|
| 23 |
3
|
fmpttd |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
|
simprr |
|
| 26 |
25
|
adantr |
|
| 27 |
|
f1of |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
fco |
|
| 30 |
24 28 29
|
syl2anc |
|
| 31 |
|
simpr |
|
| 32 |
30 31
|
ffvelcdmd |
|
| 33 |
28 31
|
ffvelcdmd |
|
| 34 |
|
simpr |
|
| 35 |
2
|
adantr |
|
| 36 |
35 3
|
mulcld |
|
| 37 |
|
eqid |
|
| 38 |
37
|
fvmpt2 |
|
| 39 |
34 36 38
|
syl2anc |
|
| 40 |
|
eqid |
|
| 41 |
40
|
fvmpt2 |
|
| 42 |
34 3 41
|
syl2anc |
|
| 43 |
42
|
oveq2d |
|
| 44 |
39 43
|
eqtr4d |
|
| 45 |
44
|
ralrimiva |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
|
nffvmpt1 |
|
| 48 |
|
nfcv |
|
| 49 |
|
nfcv |
|
| 50 |
|
nffvmpt1 |
|
| 51 |
48 49 50
|
nfov |
|
| 52 |
47 51
|
nfeq |
|
| 53 |
|
fveq2 |
|
| 54 |
|
fveq2 |
|
| 55 |
54
|
oveq2d |
|
| 56 |
53 55
|
eqeq12d |
|
| 57 |
52 56
|
rspc |
|
| 58 |
33 46 57
|
sylc |
|
| 59 |
27
|
ad2antll |
|
| 60 |
|
fvco3 |
|
| 61 |
59 60
|
sylan |
|
| 62 |
|
fvco3 |
|
| 63 |
59 62
|
sylan |
|
| 64 |
63
|
oveq2d |
|
| 65 |
58 61 64
|
3eqtr4d |
|
| 66 |
15 19 22 32 65
|
seqdistr |
|
| 67 |
|
fveq2 |
|
| 68 |
36
|
fmpttd |
|
| 69 |
68
|
adantr |
|
| 70 |
69
|
ffvelcdmda |
|
| 71 |
67 20 25 70 61
|
fsum |
|
| 72 |
|
fveq2 |
|
| 73 |
23
|
adantr |
|
| 74 |
73
|
ffvelcdmda |
|
| 75 |
72 20 25 74 63
|
fsum |
|
| 76 |
75
|
oveq2d |
|
| 77 |
66 71 76
|
3eqtr4rd |
|
| 78 |
|
sumfc |
|
| 79 |
78
|
oveq2i |
|
| 80 |
|
sumfc |
|
| 81 |
77 79 80
|
3eqtr3g |
|
| 82 |
81
|
expr |
|
| 83 |
82
|
exlimdv |
|
| 84 |
83
|
expimpd |
|
| 85 |
|
fz1f1o |
|
| 86 |
1 85
|
syl |
|
| 87 |
13 84 86
|
mpjaod |
|