Step |
Hyp |
Ref |
Expression |
1 |
|
fsum2mul.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsum2mul.2 |
|- ( ph -> B e. Fin ) |
3 |
|
fsum2mul.3 |
|- ( ( ph /\ j e. A ) -> C e. CC ) |
4 |
|
fsum2mul.4 |
|- ( ( ph /\ k e. B ) -> D e. CC ) |
5 |
2 4
|
fsumcl |
|- ( ph -> sum_ k e. B D e. CC ) |
6 |
1 5 3
|
fsummulc1 |
|- ( ph -> ( sum_ j e. A C x. sum_ k e. B D ) = sum_ j e. A ( C x. sum_ k e. B D ) ) |
7 |
2
|
adantr |
|- ( ( ph /\ j e. A ) -> B e. Fin ) |
8 |
4
|
adantlr |
|- ( ( ( ph /\ j e. A ) /\ k e. B ) -> D e. CC ) |
9 |
7 3 8
|
fsummulc2 |
|- ( ( ph /\ j e. A ) -> ( C x. sum_ k e. B D ) = sum_ k e. B ( C x. D ) ) |
10 |
9
|
sumeq2dv |
|- ( ph -> sum_ j e. A ( C x. sum_ k e. B D ) = sum_ j e. A sum_ k e. B ( C x. D ) ) |
11 |
6 10
|
eqtr2d |
|- ( ph -> sum_ j e. A sum_ k e. B ( C x. D ) = ( sum_ j e. A C x. sum_ k e. B D ) ) |