Metamath Proof Explorer


Theorem fsum2mul

Description: Separate the nested sum of the product C ( j ) x. D ( k ) . (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsum2mul.1
|- ( ph -> A e. Fin )
fsum2mul.2
|- ( ph -> B e. Fin )
fsum2mul.3
|- ( ( ph /\ j e. A ) -> C e. CC )
fsum2mul.4
|- ( ( ph /\ k e. B ) -> D e. CC )
Assertion fsum2mul
|- ( ph -> sum_ j e. A sum_ k e. B ( C x. D ) = ( sum_ j e. A C x. sum_ k e. B D ) )

Proof

Step Hyp Ref Expression
1 fsum2mul.1
 |-  ( ph -> A e. Fin )
2 fsum2mul.2
 |-  ( ph -> B e. Fin )
3 fsum2mul.3
 |-  ( ( ph /\ j e. A ) -> C e. CC )
4 fsum2mul.4
 |-  ( ( ph /\ k e. B ) -> D e. CC )
5 2 4 fsumcl
 |-  ( ph -> sum_ k e. B D e. CC )
6 1 5 3 fsummulc1
 |-  ( ph -> ( sum_ j e. A C x. sum_ k e. B D ) = sum_ j e. A ( C x. sum_ k e. B D ) )
7 2 adantr
 |-  ( ( ph /\ j e. A ) -> B e. Fin )
8 4 adantlr
 |-  ( ( ( ph /\ j e. A ) /\ k e. B ) -> D e. CC )
9 7 3 8 fsummulc2
 |-  ( ( ph /\ j e. A ) -> ( C x. sum_ k e. B D ) = sum_ k e. B ( C x. D ) )
10 9 sumeq2dv
 |-  ( ph -> sum_ j e. A ( C x. sum_ k e. B D ) = sum_ j e. A sum_ k e. B ( C x. D ) )
11 6 10 eqtr2d
 |-  ( ph -> sum_ j e. A sum_ k e. B ( C x. D ) = ( sum_ j e. A C x. sum_ k e. B D ) )