Step |
Hyp |
Ref |
Expression |
1 |
|
fsum0diag2.1 |
|
2 |
|
fsum0diag2.2 |
|
3 |
|
fsum0diag2.3 |
|
4 |
|
fznn0sub2 |
|
5 |
4
|
ad2antll |
|
6 |
3
|
expr |
|
7 |
6
|
ralrimiv |
|
8 |
1
|
eleq1d |
|
9 |
8
|
cbvralvw |
|
10 |
7 9
|
sylibr |
|
11 |
10
|
adantrr |
|
12 |
|
nfcsb1v |
|
13 |
12
|
nfel1 |
|
14 |
|
csbeq1a |
|
15 |
14
|
eleq1d |
|
16 |
13 15
|
rspc |
|
17 |
5 11 16
|
sylc |
|
18 |
17
|
fsum0diag |
|
19 |
|
nfcsb1v |
|
20 |
19
|
nfel1 |
|
21 |
|
csbeq1a |
|
22 |
21
|
eleq1d |
|
23 |
20 22
|
rspc |
|
24 |
10 23
|
mpan9 |
|
25 |
|
csbeq1 |
|
26 |
24 25
|
fsumrev2 |
|
27 |
|
elfz3nn0 |
|
28 |
27
|
ad2antlr |
|
29 |
|
elfzelz |
|
30 |
29
|
ad2antlr |
|
31 |
|
nn0cn |
|
32 |
|
zcn |
|
33 |
|
subcl |
|
34 |
31 32 33
|
syl2an |
|
35 |
28 30 34
|
syl2anc |
|
36 |
|
addid2 |
|
37 |
35 36
|
syl |
|
38 |
37
|
oveq1d |
|
39 |
38
|
csbeq1d |
|
40 |
39
|
sumeq2dv |
|
41 |
26 40
|
eqtrd |
|
42 |
41
|
sumeq2dv |
|
43 |
|
elfz3nn0 |
|
44 |
43
|
adantl |
|
45 |
|
addid2 |
|
46 |
44 31 45
|
3syl |
|
47 |
46
|
oveq1d |
|
48 |
47
|
oveq2d |
|
49 |
47
|
oveq1d |
|
50 |
49
|
adantr |
|
51 |
43
|
ad2antlr |
|
52 |
|
elfzelz |
|
53 |
52
|
ad2antlr |
|
54 |
|
elfzelz |
|
55 |
54
|
adantl |
|
56 |
|
zcn |
|
57 |
|
sub32 |
|
58 |
31 56 32 57
|
syl3an |
|
59 |
51 53 55 58
|
syl3anc |
|
60 |
50 59
|
eqtrd |
|
61 |
60
|
csbeq1d |
|
62 |
48 61
|
sumeq12rdv |
|
63 |
62
|
sumeq2dv |
|
64 |
18 42 63
|
3eqtr4d |
|
65 |
|
fzfid |
|
66 |
|
elfzuz3 |
|
67 |
66
|
adantl |
|
68 |
|
elfzuz3 |
|
69 |
68
|
adantl |
|
70 |
69
|
adantr |
|
71 |
|
elfzuzb |
|
72 |
67 70 71
|
sylanbrc |
|
73 |
|
elfzelz |
|
74 |
73
|
adantl |
|
75 |
|
elfzel2 |
|
76 |
75
|
ad2antlr |
|
77 |
|
elfzelz |
|
78 |
77
|
ad2antlr |
|
79 |
|
fzsubel |
|
80 |
74 76 78 74 79
|
syl22anc |
|
81 |
72 80
|
mpbid |
|
82 |
|
subid |
|
83 |
74 32 82
|
3syl |
|
84 |
83
|
oveq1d |
|
85 |
81 84
|
eleqtrd |
|
86 |
|
simpll |
|
87 |
|
fzss2 |
|
88 |
69 87
|
syl |
|
89 |
88
|
sselda |
|
90 |
86 89 10
|
syl2anc |
|
91 |
|
nfcsb1v |
|
92 |
91
|
nfel1 |
|
93 |
|
csbeq1a |
|
94 |
93
|
eleq1d |
|
95 |
92 94
|
rspc |
|
96 |
85 90 95
|
sylc |
|
97 |
65 96
|
fsumcl |
|
98 |
|
oveq2 |
|
99 |
|
oveq1 |
|
100 |
99
|
csbeq1d |
|
101 |
100
|
adantr |
|
102 |
98 101
|
sumeq12dv |
|
103 |
97 102
|
fsumrev2 |
|
104 |
64 103
|
eqtr4d |
|
105 |
|
vex |
|
106 |
105 1
|
csbie |
|
107 |
106
|
a1i |
|
108 |
107
|
sumeq2dv |
|
109 |
108
|
sumeq2i |
|
110 |
|
ovex |
|
111 |
110 2
|
csbie |
|
112 |
111
|
a1i |
|
113 |
112
|
sumeq2dv |
|
114 |
113
|
sumeq2i |
|
115 |
104 109 114
|
3eqtr3g |
|